摘要 . 淡水小龙虾 (Cherax quadricarinatus von Martens, 1868) 也称为红螯虾,是一种淡水龙虾 (甲壳类动物),具有开发为消费商品的潜力。龙虾养殖的发展可以采用集约化系统进行。幼体生产是生产食用规格龙虾的重要关键之一。幼体阶段的生产力必须由生长和存活来支持。适当的饲料是影响幼体生长和存活的重要关键之一。必须以全面的方式传达有关幼体所需营养的信息,以便对龙虾养殖发展工作有用。这篇评论文章旨在阐述幼体红螯虾的营养需求及其代谢作用。该评论通过研究印度尼西亚国内和国际上的各种文章进行,这些文章讨论了与红螯虾相关的主题,例如天然食物和饲料营养在幼体生长中的作用。综述结果表明,红螯螯虾养殖的重要问题之一是幼虾的生长和存活。幼虾表现出非选择性摄食行为,但存在个体发育过程中的饮食变化。红螯螯虾摄食习性特点是外源摄食,一般以腐烂的动植物、大型无脊椎动物、碎屑、大型植物和鱼类为食。红螯螯虾幼虾表现出滤食和刮食行为,属于非选择性摄食者。在养殖环境中,一些研究表明红螯螯虾幼虾以 Alona sp.、Daphnia sp.、Artemia sp.、红虫、蚕以及一些与其他有机物的组合(如米粉、胡萝卜、金螺、蚯蚓和凤尾鱼)为食。营养成分与摄食习性、个体发育过程中的饮食变化及其酶代谢之间存在一定的关系。幼年红螯虾需要的蛋白质多于碳水化合物和脂质,尽管维生素和矿物质的整体营养摄入对生长和生存很重要。关键词:摄食习性、生产力、蛋白质、个体发育。引言。淡水龙虾是具有养殖和商业发展潜力的小龙虾 (甲壳类动物) 之一。广泛养殖的小龙虾品种之一是红螯虾 (Cherax quadricarinatus von Martens, 1868),它是澳大利亚北部和巴布亚新几内亚东南部的本土品种 (Lawrence & Jones 2002;Snovsky & Galil 2011;Partini 等人 2019;Akmal 等人 2021;Faiz 等人 2021)。
摘要。—菊法鱼(Crawfish Frog(Lithobates aylolatus)的占用率在其历史范围的大部分范围内下降了35%,这主要是由于栖息地转换为农业。在美国路易斯安那州,大多数记录日期是1970年代之前的日期,最近仅在几个地点记录了该物种。这项研究旨在评估路易斯安那州乳杆菌的当前分布和状态,并确定该物种的气候和栖息地关联。在2019年春季,我们沿着可能合适的栖息地的地区沿着历史地点附近的道路进行了夜间呼叫调查。尽管付出了巨大的努力,但我们没有遇到任何人。为了确定随后的调查的合适区域,我们使用1990年的路易斯安那州,德克萨斯州和俄克拉荷马州的本地信息开发了一种生态利基模型,以及生物气候,土地覆盖和土壤水文变量。在12个教区中,只有六个具有历史记录的乳乳杆菌记录,预计对该物种具有可观的适合性领域。我们根据模型建立了五个新路线,并在2020年和2021年期间对它们进行了调查。我们还在2020年还部署了12个自动录音机和2021年的7个。尽管有这些额外的努力,但未发现乳杆菌,表明该物种在路易斯安那州可能被灭绝或极为罕见。尽管如此,我们的研究确定了该物种南部范围内该物种的气候和栖息地关联,以及可以评估潜在重新引入地点的区域。
抽象有效的维护预测对于确保工业机械的运行连续性和寿命至关重要。本文对机器维护预测的任务进行了对机器学习算法的比较分析。通过严格的实验和评估,我们评估了包括Adaboost,随机森林,梯度增强和Sup-Port Vector Machines(SVM)在内的算法的性能。此外,为了提高预测精度,我们将优化器算法(杜鹃搜索)集成到我们的框架中。此优化技术微调算法参数,进一步提高了准确性。我们的发现为优化机器维护预测提供了宝贵的见解,通过积极的维护策略赋予行业能力,以减轻停机时间并提高生产率。关键字:机器学习模型,随机森林,克雷鱼,优化器,维护。简介小节样本预测维护已成为希望优化其操作,最小化停机时间并降低维护成本的行业的关键策略。通过利用高级数据分析和Ma-Chine学习技术,公司可以预测何时可能发生设备故障,从而实现主动维护干预措施。开发的预测维护软件利用了从计算机数据集派生的四个选定功能的实时数据。这些功能是机器健康和性能的指标。此优化技术有助于微调模型参数,以证明其预测精度和整体性能。通过实时连续监视这些功能,软件可以评估机器的当前状态并预测是否需要维护。为了确保准确的预测,比较和评估了各种分类技术,以确定最有效的模型。这涉及分析不同算法的性能,例如神经网络,决策树,SVM和随机森林等。通过严格的测试和验证,选择了最高表现的模型以在预测维护应用中实现。除了选择最佳分类技术外,使用小龙虾优化器进一步提高了模型的效率。通过利用小龙虾运算层的功能,该软件可以在预测维护需求方面获得更高的精度和可靠性。
可再生能源 (RES) 已成为电网不可或缺的组成部分,但它们的整合带来了系统惯性损失以及负载需求与发电能力不匹配等挑战。这些问题危及电网稳定性。为了解决这个问题,提出了一种有效的方法,将增强型负载频率控制 (LFC)(即模糊 PID-TID µ)与受控储能系统(特别是受控氧化还原液流电池 (CRFB))相结合,以减轻 RES 整合带来的不确定性。该策略的参数优化是使用小龙虾优化算法 (COA) 实现的,该算法以其全局优化能力以及探索与利用之间的平衡而闻名。与传统控制器(PID、FO-PID、FO-(PD-PI))的性能评估证实了所提出的方法在 LFC 中的优越性。在各种负载扰动、高可再生能源渗透率和通信延迟下进行的广泛测试确保了其在最大限度地减少中断方面的有效性。使用标准化 IEEE 39 总线系统进行验证进一步证明了其在应对大量可再生能源渗透的电网中的效率。总之,该综合战略为适应日益增加的可再生能源利用的现代电力系统提供了强有力的解决方案。
抽象的地下栖息地代表了许多保护策略中的焦点栖息地;但是,这些环境是最难采样的。新的抽样方法,例如环境DNA(EDNA),显示出有望改善造型的检测,但采样偏差的来源却很差。因此,我们确定了使用传统的视觉调查和eDNA调查对洞穴鱼类和洞穴小龙虾的传统视觉调查和EDNA调查影响检测概率的因素,并证明了检测如何影响这些分类单元的调查工作。我们在Ozark Highlands Ecoregion上抽样了40个地点(179个视觉和183次EDNA调查)。我们使用两种调查方法在不同的环境条件下估计了洞穴鱼鱼和山洞鱼的检测概率。EDNA或视觉调查的有效性因环境条件(即水量,典型基材和水速度)和目标分类单元而异。当在平均水速度,无流量和粗底物的区域进行采样时,EDNA调查的检测概率(0.49)比视觉调查(0.35)更高(0.35)(0.35)(0.67)的检测概率(0.67)的检测概率高于EDNA调查的概率(0.40)的检测概率(0.40)。在相同的采样条件下,需要进行10项埃德纳调查,以确保洞穴
Agersnap,S.,Larsen,W.B.,Knudsen,S.W.,Strand,D.,Thomsen,P.F.,Hesselsøe,M。Etal。(2017)。使用淡水样品中的环境DNA对贵族,信号和狭窄的小龙虾进行监测。plos One,12(6),1 - 22。https://doi.org/10.1371/journal.pone。0179261 Baudry,T.,Mauvisseau,Q.,Goût,J.,Arqué,A.,Delaunay,C.,Smith-Ravin,J。等。(2021)。在生物多样性热点中绘制一个超级侵蚀者,这是一个基于埃德娜的成功故事。生态指标,126,107637。https://doi.org/10.1016/j.ecolind.2021.107637 Bedwell,M.E。&Goldberg,C.S。(2020)。环境DNA检测的空间和时间模式,以告知灯杆和底漆系统中的采样方案。生态与进化,10(3),1602 - 1612。https:// doi.org/10.1002/ece3.6014 Belle,C.C.,Stoeckle,B.C。&Geist,J。(2019)。水生保护中淡水环境DNA研究的分类和地理代表。水上保护:海洋和淡水生态系统,29(11),1996 - 2009年。https://doi.org/10.1002/aqc.3208 Biotope。(2020)。eTuded'Améliorationde la Connaissance sur le Poisson Gale(AnablePsoides Cryptocallus):分布,Étatde Conservation,Mesures Et推荐。https://www.observatoire-eau-martinique.fr/ documents/rapport-poisson-gale-vf.pdf Brys,R.,Halfmaerten,D.,Neyrinck,S.,Mauvisseau,Mauvisseau,Q.(2020)。可靠的EDNA检测和欧洲天气loach(Misgurnus possilis)的定量。(2009)。(2019)。鱼类生物学杂志,98(2),399 - 414。https://doi.org/10.1111/jfb.14315 Bustin,S.A.,Benes,V.,Garson,J.A. MIQE指南:最少发表定量实时PCR实验的信息。 临床化学,55(4),611 - 622。https://doi.org/10.1373/clinchem.2008。 112797 Cantera,I.,Cilleros,K.,Valentini,A.,Cerdan,A.,Dejean,T.,Iribar,A。等。 为热带流和河流中的鱼类库存优化环境DNA采样工作。 科学报告,9(1),1 - 11。https://doi.org/10.1038/S41598-019-019-39399-5 Ceballos,G.,Ehrlich,P.R.,P.R.,Barnosky,Barnosky,Barnosky,A.D. &Palmer,T.M。 (2015)。 加速现代人类引起的物种损失:进入第六次巨大灭绝。 科学进步,1(5),E1400253。 https://doi.org/10.1126/sciadv.1400253 Cowart,D.A.,Breedveld,K.G.H.,Ellis,M.J.,M.J.,Hull,J.M. &Larson,E.R。 (2018)。 环境DNA(EDNA)用于保护危险的小龙虾(Decapoda:Astacidea),通过监测入侵物种障碍和重新定位的种群。 甲壳类生物学杂志,38(3),257 - 266。https://doi.org/10.1093/jcbiol/jcbiol/ ruy007 Cristescu,M.E。 (2019)。 环境RNA可以革新生物多样性科学吗? 生态与进化的趋势,34(8),694 - 697。https:// doi。 org/10.1016/j.tree.2019.05.003 Deal Martinique,Ecovia。 &Creocean。 (2018)。 诊断 - Martinique环境环境。 https://www.martinique。鱼类生物学杂志,98(2),399 - 414。https://doi.org/10.1111/jfb.14315 Bustin,S.A.,Benes,V.,Garson,J.A.MIQE指南:最少发表定量实时PCR实验的信息。临床化学,55(4),611 - 622。https://doi.org/10.1373/clinchem.2008。112797 Cantera,I.,Cilleros,K.,Valentini,A.,Cerdan,A.,Dejean,T.,Iribar,A。等。为热带流和河流中的鱼类库存优化环境DNA采样工作。科学报告,9(1),1 - 11。https://doi.org/10.1038/S41598-019-019-39399-5 Ceballos,G.,Ehrlich,P.R.,P.R.,Barnosky,Barnosky,Barnosky,A.D.&Palmer,T.M。(2015)。加速现代人类引起的物种损失:进入第六次巨大灭绝。科学进步,1(5),E1400253。https://doi.org/10.1126/sciadv.1400253 Cowart,D.A.,Breedveld,K.G.H.,Ellis,M.J.,M.J.,Hull,J.M.&Larson,E.R。(2018)。环境DNA(EDNA)用于保护危险的小龙虾(Decapoda:Astacidea),通过监测入侵物种障碍和重新定位的种群。甲壳类生物学杂志,38(3),257 - 266。https://doi.org/10.1093/jcbiol/jcbiol/ ruy007 Cristescu,M.E。(2019)。环境RNA可以革新生物多样性科学吗?生态与进化的趋势,34(8),694 - 697。https:// doi。org/10.1016/j.tree.2019.05.003 Deal Martinique,Ecovia。&Creocean。(2018)。诊断 - Martinique环境环境。https://www.martinique。developpement-durable.gouv.fr/img/pdf/diagnostic_vf.3.pdf deiner,K。&Altermatt,F。(2014)。自然河中无脊椎动物环境DNA的运输距离。PLOS ONE,9(2),E88786。https://doi.org/10.1371/journal.pone.0088786 Dorazio,R.M。 &Erickson,R.A。 (2018)。 ednaocupancy:用于环境DNA数据的多尺度占用建模的R包。 分子生态资源,18(2),368 - 380。https://doi.org/10.1111/1755-0998.12735 Ferreira,A.R.L.,Sanches Fernandes,L.F.,L.F. &Pacheco,F.A.L。 (2017)。 使用嵌套的部分最小二乘回归评估对河流生态系统的人为影响。 总体科学https://doi.org/10.1371/journal.pone.0088786 Dorazio,R.M。&Erickson,R.A。 (2018)。ednaocupancy:用于环境DNA数据的多尺度占用建模的R包。分子生态资源,18(2),368 - 380。https://doi.org/10.1111/1755-0998.12735 Ferreira,A.R.L.,Sanches Fernandes,L.F.,L.F.&Pacheco,F.A.L。(2017)。使用嵌套的部分最小二乘回归评估对河流生态系统的人为影响。总体科学
自然生态系统转化为人类修饰的景观(HML)是陆地生态系统中生物多样性丧失的主要驱动力,尤其是大型捕食者的丧失。他们的灭亡会大大改变食物网,有时会释放出较小的食肉动物,例如野马科的成员。尽管如此,即使是小食肉动物也必须适应人类对候对食物的可用性的影响,从而改变其资源使用。在这种情况下,在农业栖息地种植的农作物会深刻影响社区集会。在这里,我们对2017年7月至2018年8月之间收集的75个日本鼬鼠(Mustela Itatsi)Scats进行了饮食分析,以确定其季节性饮食习惯,该景观由日本东部西部帕迪田(Rice Paddy Fields)占据主导地位。从春季到秋天,日本鼬鼠主要消耗(半)水生和限制动物分类群,特别是侵入性小龙虾(Procambarus clarkii),昆虫(例如,鞘翅目和odonata)以及成年的阿努拉(Anurans)以及所有这些都是易于使用的宠物。在冬季,japanese鼬鼠主要消耗了果实(例如,无花果,五库里卡),由于干燥的稻田和灌溉沟渠中动物猎物缺乏动物猎物的稀缺,因此在SCAT的组合含量相对减少。尽管节俭在芥末饮食中是不寻常的,但我们的发现表明,日本的奶奶酪能够自适应营养可塑性,使它们能够在稻田栖息地中生存在非典型的资源条件下。为了加强在日本保护Mustela Itatsi的广泛努力,我们建议稻米单一培养物的多样化,并鼓励冬季洪水增加水生和半养生动物猎物的可用性。
5。河巴罗河和诺尔河SAC 002162-该地点由巴罗和诺尔河流集水集的淡水延伸到Slieve Bloom Mountains的上游,它还包括潮汐元素和河口,与沃特福德(Waterford)的Creadun Head一起。它发生在包括基尔代尔在内的八个县。Its designation as an SAC is based on numerous qualifying interests including habitats and species as follows: Estuaries [1130], Mudflats and sandflats not covered by seawater at low tide [1140], Reefs [1170], Salicornia and other annuals colonising mud and sand [1310], Atlantic salt meadows (Glauco-Puccinellietalia maritimae) [1330],地中海盐草甸(Juncetalia maritimi)[1410],水平的水平至山地水平,与ranunculion fluitantis和callitricho-batrachion植被[3260],欧洲干heaths,欧洲干heaths [4030],含水型植物和pet的petrifie selltifie the Mortifie selltifie and Montifie tiut [64330] formation (Cratoneurion) [7220], Old sessile oak woods with Ilex and Blechnum in the British Isles [91A0], Alluvial forests with Alnus glutinosa and Fraxinus excelsior (Alno-Padion, Alnion incanae, Salicion albae) [91E0], Vertigo moulinsiana (Desmoulin's Whorl Snail) [1016],Margaritifera Margaritifera(淡水珍珠贻贝)[1029],Austropotamobius Pallipes(白斑点小龙虾)[1092],Petromyzon Marinus(Sea Lamprey)(Sea Lamprey)[1095] [1095] Alosa Fallax Fallax(Twaite Shad)[1103],Salmo Salar(Salmon)[1106],Lutra Lutra(Otter)[1355] [1355],Trichomanes Speciosum(Killarney Fern)[1421]和Margaritifera Durrovensis(Margaritifera Durrovensis)站点/默认/文件/保护端/概要/sy 002162.pdf)。
物种状况评估报告、规则和关键栖息地 美国鱼类和野生动物管理局打算寻求对以下物种的物种状况评估报告或规则进行同行评审: 标题:大沃什和金曼泉蜗牛的物种状况评估报告草案 标题:黑斑蝾螈的物种状况评估报告草案 标题:吉拉鲑的物种状况评估报告附录草案 标题:塔毛利潘斑尾无耳蜥蜴的物种状况评估报告草案 标题:亚利桑那蟾蜍的物种状况评估报告草案 标题:奇索斯珊瑚根的物种状况评估报告草案 标题:刷豆鱼的物种状况评估报告草案 标题:吉拉鱼的物种状况评估报告草案 标题:阿兹特克吉利亚鱼的物种状况评估报告草案 标题:2 俄克拉荷马洞穴小龙虾的物种状况评估报告草案 同行评审预计时间表:2024-2025 确定:对于正在同行评审的 SSA 报告,这些报告将为以下决定提供信息这些物种是否值得根据《濒危物种法》列入名单。如果我们确定该物种值得列入名单,我们将发布一项拟议规则,列出该物种并指定关键栖息地,并提供适当的机会让公众审查和评论。恢复规划的物种状况评估报告美国鱼类和野生动物管理局打算在恢复规划过程中寻求同行评审以下物种的物种状况评估报告:标题: Chupadera Springsnail 的物种状况评估报告草案标题: Sentry Milk-vetch 的物种状况评估报告草案标题: Mount Graham Red Squirrel 的物种状况评估报告草案
关于合作者科学系列:合作者科学系列丛书于2013年启动。其目的是促进研究项目报告的归档和检索,主要是由美国支持的调查鱼类和野生动物服务(FWS),尤其是野生动植物和运动鱼修复计划。选择了在线格式,以立即访问FWS,州和部落管理机构,保护界以及整个公众的科学报告。本系列中的所有报告均经过与进行研究的机构和实体一致的同行审查过程。对于美国地质调查局作者,同行评审过程(http://www.usgs.gov/usgs-manual/500/502-3.html)还包括局在传播之前的批准官员的审查。提供这些报告的作者和/或机构/机构对其内容完全负责。FWS不提供这些报告的社论或技术审查。本系列报告中的评论和其他信件应针对报告作者或机构/机构。在大多数情况下,本系列发表的报告是以当前或修订的格式出版的,在同行评审的科学文献中。在科学文献发表之前进行进一步的同行审查或其他数据和/或分析后,可以修改报告中包含的数据的结果和解释。合作者科学系列得到了西弗吉尼亚州Shepherdstown国家保护培训中心FWS的支持和维护。101-2013。该系列依次编号为参考的出版年度,并从报告号FWS已将其他各种编号系统用于类似但现在停止的报告系列。从编号101对于当前系列而言,旨在避免与早期报告编号的混淆。使用合同的研究机构和机构,贸易,产品,行业或公司名称或产品或软件或模型(无论是否商业上)仅出于信息目的,并且不构成美国政府的认可。合同参考:本文件符合美国资助的研究报告要求鱼类和野生动物服务避难所(G15AC00021)。先前发布的文档,该文件在适用时会在其中一部分履行本合同的任何部分。(USGS IPDS#:IP-106157)。推荐引用:Brewer,S。K.,J。B. Mouser和R. van den Bussche。2020。使用环境DNA(EDNA)评估Ozark高地洞穴中的洞穴鱼和小龙虾种群的存在。美国内政部,鱼类和野生动物服务部,合作社科学系列FWS/CSS-135-2020,华盛顿特区