抽象有效的维护预测对于确保工业机械的运行连续性和寿命至关重要。本文对机器维护预测的任务进行了对机器学习算法的比较分析。通过严格的实验和评估,我们评估了包括Adaboost,随机森林,梯度增强和Sup-Port Vector Machines(SVM)在内的算法的性能。此外,为了提高预测精度,我们将优化器算法(杜鹃搜索)集成到我们的框架中。此优化技术微调算法参数,进一步提高了准确性。我们的发现为优化机器维护预测提供了宝贵的见解,通过积极的维护策略赋予行业能力,以减轻停机时间并提高生产率。关键字:机器学习模型,随机森林,克雷鱼,优化器,维护。简介小节样本预测维护已成为希望优化其操作,最小化停机时间并降低维护成本的行业的关键策略。通过利用高级数据分析和Ma-Chine学习技术,公司可以预测何时可能发生设备故障,从而实现主动维护干预措施。开发的预测维护软件利用了从计算机数据集派生的四个选定功能的实时数据。这些功能是机器健康和性能的指标。此优化技术有助于微调模型参数,以证明其预测精度和整体性能。通过实时连续监视这些功能,软件可以评估机器的当前状态并预测是否需要维护。为了确保准确的预测,比较和评估了各种分类技术,以确定最有效的模型。这涉及分析不同算法的性能,例如神经网络,决策树,SVM和随机森林等。通过严格的测试和验证,选择了最高表现的模型以在预测维护应用中实现。除了选择最佳分类技术外,使用小龙虾优化器进一步提高了模型的效率。通过利用小龙虾运算层的功能,该软件可以在预测维护需求方面获得更高的精度和可靠性。
主要关键词