海军水面作战中心达尔格伦分部 (NSWCDD) 拥有广泛而多样的研究、开发、测试和评估 (RDT&E) 组合,重点是战争系统的开发和集成。展望未来五年及以后,我们将为水面海军开发未来技术,并在此过程中增强自身实力,我们的技术重点将包括以下五个具体技术重点:
有意接种疫苗的参与者应提前填写疫苗接种记录 (VAR) 的 A、B、C 和 D 部分(如适用)。参与者应携带填妥的表格以及身份证和保险卡前往预约地点。
低速设施中风洞流质量测量和评估的现代框架 随着测试的复杂性增加,对风洞测试测量精度的要求也越来越严格。在风洞测试时间减少和测试成本增加的环境下,重要的是在较长时间内建立、维护和统计控制风洞设施中测量链所有组件的精确校准和验证。本文介绍了在贝尔格莱德军事技术学院的 T-35 4.4 m × 3.2 m 低速风洞中建立和维护测量质量控制系统所做的努力。该设施测量质量的保证基于确保三个主要组成部分的质量:风洞测试部分的校准、所用仪器的校准以及标准风洞模型的定期测试。介绍了相关风洞校准测试的样本结果,并将其与其他设施的结果进行了比较。测试证实了该设施的整体质量良好,并且必须保持、定期检查和系统地记录所达到的质量水平。关键词:风洞流动质量;低速风洞;标准校准模型;AGARD-B;ONERA M4。1.简介 风洞测试是任何飞机设计和开发的重要组成部分。预测未来飞行物体的空气动力学行为和特性的通常做法是进行相对小规模模型的风洞测试。为了确保对风洞数据进行有意义的解释,必须了解和纠正影响结果的影响因素;修正后的数据应与来自不同风洞或自由空气情况的数据具有可比性,[1]-[9]。此外,最好采用或多或少标准的校准和测试程序,以使来自不同风洞的数据尽可能接近可比性。在测试模型的风洞结果可用于预测未来飞行物体的气动特性之前,必须确定模型支撑系统和非均匀气流条件的影响随着风洞试验对测量精度的要求越来越严格,试验的复杂性也随之增加,并且在风洞试验时间减少、试验成本不断上升的环境下,重要的是对风洞设施中测量链的所有组件进行准确的校准和验证,更重要的是,在较长时间内保持和统计控制 [10]。
1962 年,美国在太平洋上空 250 英里处引爆了一枚百万吨级核武器。爆炸导致高层大气中电子严重失衡,并与地球磁场相互作用,在太平洋大片地区产生振荡电场。这些场的强度足以损坏一千英里外夏威夷的电子设备,并清楚地展示了电磁脉冲 (EMP) 的影响。军方不久就开始考虑如何在不使用核武器的情况下制造这种脉冲。20 世纪 60 年代末,达尔格伦海军武器实验室的特殊应用部门开始研究如何产生高功率振荡电场,这种电场可用作破坏敌方电子设备的武器。这些设备基本上是无线电早期使用的老式火花隙发射器的高功率版本。为了构造一种能够产生类似核电磁脉冲场的装置,需要将储存的电能转换为射频 (RF) 能量,然后通过天线穿过大气层辐射到目标。这些装置通常将能量储存在高压电容器中,并使用火花隙开关快速释放能量。然后,这会在天线上驱动振荡电流,使其辐射。为了达到核电磁脉冲的典型场强数千伏/米,需要工作电压为数十万伏或更高的装置。20 世纪 70 年代初,人们研究了许多辐射装置。大多数都属于一类称为赫兹振荡器的装置。电容器被充电至高电压,开关闭合,电流在电路中流动,导致储存的能量在电容器的电场和电感器的磁场之间振荡。要将电容器充电到极高的电压,必须使用某种类型的升压变压器。最常用的倍压器之一是马尔克斯发生器。内部电阻和外部辐射的损耗通常会在几个周期后衰减振荡波形。因此,辐射脉冲的时间很短,频率成分很宽。1 图 1 显示了电感电容振荡器(LC 振荡器)的简单示意图。
