摘要:脂质失调与阿尔茨海默氏病(AD)病理有关。转基因AD小鼠模型中淀粉样β(Aβ)斑块病理学的化学分析表明,在β斑块病理学直接接近的微环境中,微环境发生了变化。在小鼠研究中,还报道了与β病理学之间的结构多态性相关的脂质模式的差异,例如弥漫,未成熟和成熟的纤维骨料。迄今为止,尚未对人AD组织的神经脂质微环境变化进行全面分析。Here, for the first time, we leverage matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) through a high- speed and spatial resolution commercial time-of-light instrument, as well as a high- mass-resolution in-house-developed orbitrap system to characterize the lipid microenvironment in postmortem human brain tissue from AD patients carrying Presenilin 1导致AD家族形式的突变(PSEN1)(FAD)。对单个Aβ斑块的空间解决的MSI数据进行询问,使我们能够从富含和耗尽Aβ沉积物的不同子类中验证近40种鞘脂和磷脂物种。其中包括单胞菌 - 旋转酶(GM),神经酰胺单己糖苷(己糖),神经酰胺1-磷酸盐(CERP),神经酰胺磷酸乙醇胺结合物(PE-CER),硫酸磷脂剂(ST),以及磷脂酰糖苷(pi),磷酸酯酸(磷脂酸)(磷酸酯)(磷酸酯)(磷酸化)(磷酸酯) (包括抒情形式)。的确,许多鞘脂种类与先前在转基因AD小鼠模型中看到的物种重叠。有趣的是,与动物研究相比,我们观察到含有蛛网膜酸(AA)的PE和PI物种的定位水平增加。这些发现高度相关,这是人类脂质微环境中与β斑块病理相关的改变。他们为开发潜在的脂质生物标志物的发展提供了基础,以对人类特异性分子途径改变的洞察力进行洞察力。关键词:阿尔茨海默氏病,β-淀粉样蛋白,牙菌病,神经脂肪组学,质谱成像,老年蛋白1■简介
摘要:脂质失调与阿尔茨海默氏病(AD)病理有关。转基因AD小鼠模型中淀粉样β(Aβ)斑块病理学的化学分析表明,在β斑块病理学直接接近的微环境中,微环境发生了变化。在小鼠研究中,还报道了与β病理学之间的结构多态性相关的脂质模式的差异,例如弥漫,未成熟和成熟的纤维骨料。迄今为止,尚未对人AD组织的神经脂质微环境变化进行全面分析。Here, for the first time, we leverage matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) through a high- speed and spatial resolution commercial time-of-light instrument, as well as a high- mass-resolution in-house-developed orbitrap system to characterize the lipid microenvironment in postmortem human brain tissue from AD patients carrying Presenilin 1导致AD家族形式的突变(PSEN1)(FAD)。对单个Aβ斑块的空间解决的MSI数据进行询问,使我们能够从富含和耗尽Aβ沉积物的不同子类中验证近40种鞘脂和磷脂物种。其中包括单胞菌 - 旋转酶(GM),神经酰胺单己糖苷(己糖),神经酰胺1-磷酸盐(CERP),神经酰胺磷酸乙醇胺结合物(PE-CER),硫酸磷脂剂(ST),以及磷脂酰糖苷(pi),磷酸酯酸(磷脂酸)(磷酸酯)(磷酸酯)(磷酸化)(磷酸酯) (包括抒情形式)。的确,许多鞘脂种类与先前在转基因AD小鼠模型中看到的物种重叠。有趣的是,与动物研究相比,我们观察到含有蛛网膜酸(AA)的PE和PI物种的定位水平增加。这些发现高度相关,这是人类脂质微环境中与β斑块病理相关的改变。他们为开发潜在的脂质生物标志物的发展提供了基础,以对人类特异性分子途径改变的洞察力进行洞察力。关键词:阿尔茨海默氏病,β-淀粉样蛋白,牙菌病,神经脂肪组学,质谱成像,老年蛋白1■简介
www . misawa . af . mil 第 35 战斗机联队 (DSN) 电话:315-226-3075 传真:315-226-9342 公共事务办公室 (COM) 电话:0176-53-5181,分机 226-3075 日本三泽空军基地 96319-5009 (COM) 传真:0176-53-5181,分机 226-9342
肥厚性阻塞性心肌病(HOCM)描述了一种病理状态,其中介入隔膜的亚电源区域会经历明显的肥大和纤维化,导致隔层弯曲成左心室。减少的左心室腔室大小和心脏功能改变会损害舒张期填充,中风体积和心脏输出。该病例报告评估了受HOCM影响的36岁,福尔马林插入的尸体的心脏组织,目的是全面概述与该疾病相关的总体和病理发现。发现该供体的心脏比平均水平大,重510.1 g,比具有相似身材的男性的预测值335.6 g的重52%。介入隔膜,右心室壁和左心室游离壁的厚度可与其他HOCM报告相当。然而,左心室壁的不对称增厚,这是HOCM的特征,它比预期的不太突出。尸体组织的组织学染色,苏木精和曙红,三色和Desmin,进一步增强了诊断。重要的是,这也表明,隔离组织的组织学检查是有效的,诊断性的,即使是在防腐后期的11个月。本文表明,尸体心脏组织的形态和组织学分析足以支持HOCM的诊断。对研究人员的知识,这是评估医学教育捐赠的尸体中HOCM的第一份案例报告。
前言皇家病理学家学院(RCPATH)发布的尸检准则应使病理学家能够以一致的方式和高标准处理非法务同意和医学授权的验证后。这些准则是系统地开发的陈述,以协助从业者的决策,并基于准备文件准备时的最佳证据。鉴于大量尸检工作是单一观察者,而实际上仅一次性的观察者,必须认识到,没有超出FRCPath第2部分考试或更高尸检培训证书(CHAT)的可审查标准。尽管如此,可以针对事前成像和/或其他数据进行审查。已制定该指南以涵盖最常见的情况。但是,我们认识到指南无法预料每种病理标本类型和临床情况。因此,可能需要与本指南中建议的做法偶尔发生差异,以最大程度地向病理学家,验尸官/检察官财政和死者的家人提高益处的方式报告标本。病理学家应该能够证明/解释与指南的任何偏差。总医学委员会(GMC)在所有实践领域都有持续的专业发展(CPD)的一般要求,这自然涵盖了尸检实践。那些希望发展专业知识/专门研究尸检病理学的人寻求适当的教育机会并参与相关的外部质量保证(EQA)计划。准则本身构成了实施和传播良好实践的工具。与以下利益相关者联系以咨询此文件:
Sarles,Molly R.,使用两种不同的定量方法论在人尸体中估算尸体间隔,科学硕士(生物学),5月,2023年,萨姆·休斯顿州立大学,德克萨斯州亨茨维尔。
摘要:食源性疾病主要是由于用致病性微生物污染肉类或肉类产品。在这项研究中,我们首先研究了Tris缓冲血浆激活水(TB-PAW)在弯曲杆菌(C.)Jejuni和Escherichia(E。)(E.)大肠杆菌上的体外应用,并减少了约。4.20±0.68和5.12±0.46 log 10 cfu/ml。此外,将鸡肉和鸭子大腿(用Jejuni或大肠杆菌接种)和乳房(带有天然的微叶),用TB-PAW喷洒皮肤。样品在修改的气氛下填充,并在4℃下储存0、7和14天。TB-PAW可以在第7和第14天(鸡)和大肠杆菌在第14天(鸭)中大大减少C. jejuni。在鸡肉中,感觉,pH值,颜色和抗氧化活性没有显着差异,但是%oxymb水平降低,而%metmb和%deomb却增加了。在鸭中,我们观察到TB-PAW的pH值,颜色和肌红蛋白氧化还原形式的略有差异,而感官测试人员并未感知这些形式。仅在产品质量方面略有差异,其用作喷雾处理可能是减少鸡肉和鸭子尸体上的Jejuni和大肠杆菌的有用方法。
背景:可视化和理解3维(3D)神经解剖学是具有挑战性的。尸体解剖受到低可用性,高成本和对专业设施的需求的限制。新技术,包括神经影像学的3D渲染,3D图片和3D视频,正在填补这一差距并促进学习,但它们也有局限性。这项概念验证研究探讨了将3D重建的神经影像数据与3D摄影测量法结合现实的纹理和精细解剖细节相结合的空间精度的可行性,以创建高实现cadaveric cadaveric神经外科外科手术模拟。方法:四个固定和注射的尸体头进行了神经影像学。为创建3D虚拟模型,使用磁共振成像(MRI)和计算机断层扫描(CT)扫描渲染表面,并创建了分段的解剖结构。通过同步神经措施和摄影测量数据收集进行了逐步的颅骨切开术。在3D导航空间中获取的所有点均在3D虚拟模型空间中导入并注册。一种新型的机器学习辅助单眼估计工具用于创建2维(2D)照片的3D重建。深度图被转换为3D网状几何形状,该几何形状与3D Virtual Model的脑表面解剖结构合并以测试其精度。定量测量值用于验证不同技术的3D重建的空间精度。结果:使用体积神经影像数据创建了成功的多层3D虚拟模型。合并了2个模型时,单眼深度估计技术创建了照片的定性准确3D表示。
客观,通过图像指导技术改善床旁神经外科手术程序安全性和准确性的主要障碍是缺乏针对移动患者的快速部署,实时的注册和跟踪系统。这种缺陷解释了外部室排水的徒手放置的持续性,该室外排水口具有不准确定位的固有风险,多次通过,流血出血以及对邻近脑实质的伤害。在这里,作者介绍并验证了无框立体神经纳维加菌和导管放置的新型图像登记和实时跟踪系统。方法使用计算机视觉技术来开发一种几乎连续,自动和无标记的图像注册的算法。该程序融合了受试者的预处理CT扫描中的3D摄像头图像(快照表面),并且通过人工智能驱动的重新校准(Real-Track)进行了患者运动。计算了5个发生串行运动(快速,缓慢的速度滚动,俯仰和偏航运动)的5个尸体头部的表面注册误差(SRE)和目标注册误差(TRE),以及几个测试条件,例如有限的解剖学暴露和不同的受试者照明。使用模拟的无菌技术将六个导管放在每个尸体头(总计30个位置)中。过程后CT扫描允许比较计划的和实际导管位置,以进行用户错误计算。的结果注册对于所有5个尸体标本都成功,导管放置的总体平均值(±标准偏差)SRE为0.429±0.108 mm。TRE的精度在1.2毫米以下保持在1.2 mm的范围内,整个标本运动的低速和高速滚动,俯仰和偏航的速度最高,重新校准时间最慢,为0.23秒。当样品被覆盖或完全不覆盖时,SRE没有统计学上的显着差异(p = 0.336)。在明亮的环境与昏暗的环境中进行注册对SRE没有统计学上的显着影响(分别为p = 0.742和0.859)。对于导管放置,平均TRE为0.862±0.322 mm,平均用户误差(目标和实际导管尖端之间的差异)为1.674±1.195 mm。结论这个基于计算机视觉的注册系统提供了对尸体头的实时跟踪,其重新校准时间少于四分之一的一秒钟,并具有亚毫升准确性,并启用了毫米准确性的导管放置。使用这种指导床旁心室造口术可以减少并发症,改善安全性并将其推断到清醒,非肌化患者中的其他无框立体定向应用。
背景:对脑电动杆菌的解剖结构(CAC)的了解对于理解其作为附带灌注和压力均衡的动脉吻合结构的作用很重要,并且可以解释观察到的跨种群神经血管疾病患者的变化。这项研究旨在了解马拉维人口中CAC的解剖结构和形态计量学特性。材料和方法:在医疗法律尸检期间,最近24种黑人马拉维人尸体收集大脑。使用位于距大脑底部30厘米高的相机拍摄的CAC的照片。全圈属性和分段容器参数,注意完整性,典型,对称性和节式容器直径和长度。结果:在69.57%的CAC中发现了完整的圆形配置。典型的37.5%是典型的典型性患病率为26.09%。血管不对称性。有7例血管植物和12例血管发育不全。后验交通动脉(PCOA)是最大的(12个变化),最宽(7.67 mm)和最长(27.7毫米)的血管,而前交通动脉(ACOA)是最短(0.78 mm)。在这项研究中,ACOA和PCOA都是最狭窄的血管(0.67 mm)。CAC变化似乎与不同人群中观察到的变化相似。(Folia Morphol 2021; 80,4:820–826)结论:马拉维人群中存在CAC的解剖学变化,应在临床实践中考虑。