嘈杂证据或反对选择的噪声逐渐积累是感知决策过程中的主要步骤。使用小鼠中的大脑电生理记录(Steinmetz等,2019),我们检查了跨大脑区域的证据积累的神经相关性。我们证明了具有漂移扩散模型(DDM)样的发射速率活性(即,对循证敏感的渐变发射速率)的神经元分布在整个大脑中。探索了类似DDM的神经的证据积累的潜在神经机制,发现在整个大脑区域内部和整个大脑区域内都发现了不同的积累机制(即单一和种族)。我们的发现支持以下假设:证据积累正在通过大脑中的多种整合机制发生。我们进一步探讨了单个和种族蓄能器模型中集成过程的时间尺度。结果表明,每个大脑区域内的累加微电路在其整合时间尺度上具有不同的特性,这些特性在整个大脑的层次上组织。这些发现支持在多个时间尺度上积累证据的存在。除了整个大脑的整合时间尺度的变化外,在每个大脑区域内还观察到时间尺度的异质性。我们证明了这种可变性反映了微电路参数的多样性,因此具有较长积分时间尺度的累加器具有更高的复发强度。
•将对不同气候模型中的海洋中尺度的表示进行书目分析,尤其是在Optimesm框架内使用的参考书目; •将建立气候模拟,再加上CNRM-CM6-LR和CNRM-ESM2,包括2024年托雷斯的参数化,在工业前的控制条件下以及在温室气体强迫的情况下; •将分析模拟的结果,以确定:(i)在耦合构型中中尺度的海洋运输在多大程度上与Torres等人(詹姆斯(James))强迫的海洋模式中的记录的构型一致(在准备中); (ii)这些中尺度运输如何影响地球系统的其他组成部分; (iii)通过这种中索修改了气候对温室气体强度的气候反应的机制,特别关注海洋储存热量和碳和大型海洋循环系统。
关键要点:迫切需要跨越广泛长度尺度的测量方法、标准和服务,并验证从 3D 纳米级设备到 3D 集成系统的复杂结构;新材料;流程和建模数据;互操作性协议;先进封装;以及安全和供应链。
探索物质从原子到宏观尺度的多尺度特性,将实验观察与原子模拟和深度学习计算机视觉技术相结合,以回答原子如何通过缺陷运动重排实现极端固体中的体相转变这一关键问题
纳米尺度,纳米 (nm) 是长度测量的通用单位 (IS),即十亿分之一米 (10 -9 m)。纳米尺度测量非常重要,因为在这个尺度上,材料的性质可能与大尺度上的不同。例如,金分子不活跃。因此,它被用作珠宝。然而,在纳米尺度上,金分子变得非常活跃,并用于治疗癌症的医学。图 (1) 显示了纳米尺度的例子,例如病毒的大小约为 200 纳米,水分子的大小接近 0.3 纳米。分子的性质可以在纳米尺度上改变,因为与以微观形式生产的相同质量的材料相比,纳米材料每单位/体积的表面积相对较大。这可以使它们更具化学反应性。可以生产许多一维纳米尺度的材料,例如非常薄的表面涂层(半导体、金属、碳)。纳米技术着眼于这些小颗粒的新用途。纳米颗粒的例子有很多
摘要。由于光谱波模型计算成本高昂,风浪过程通常被排除在耦合地球系统模型之外,该模型需要解决空间和时间上波的频率和方向谱。地球系统模型中使用的现有均匀分辨率波浪建模方法无法恰当地表示从全球到沿海海洋尺度的波浪气候,这主要是因为沿海分辨率和计算成本之间的权衡。为了解决这一挑战,我们为 WAVEWATCH III (WW3) 模型引入了全球非结构化网格功能,该模型适合与美国能源部的能源百亿亿次地球系统模型 (E3SM) 耦合。新的非结构化 WW3 全球波浪建模方法可以在沿海地区提供更高的全球分辨率精度,但相对而言,均匀全球分辨率较低。这种新功能可以根据沿海应用的需要模拟物理相关尺度的波浪。
a. 地下水数据收集 这涉及收集和/或编目具有足够时间/空间尺度的可用格式的测井日志和水位数据,以便为长期和季节性趋势评估以及流域范围的技术研究提供信息。 b. 流域数据收集 这涉及收集和/或编目具有足够时间/空间尺度的可用格式的雨水、水库、蒸发和河流数据,以便为长期和季节性趋势评估以及流域范围的技术研究提供信息。 c. 综合流域/地下水模型和水平衡的开发 这涉及利用上述收集的数据以及历史水和土地使用信息,开发和校准综合流域/地下水模型,该模型可用作分析一系列预测未来条件和管理战略的工具,以实现给定流域/地下水系统的可持续水资源。 d. 数据和信息管理系统的开发和维护
在外部刺激上显着,迅速改变其形状和尺寸的结构在多样化的区域中广泛应用。将这些可部署和可变形结构微型化的能力对于需要高空间分辨率或最小入侵性(例如生物力学传感,手术和活检)的田地应用至关重要。尽管对致动机制和材料/结构策略进行了密集的研究,但在高尺度上实现可部署和可变形的结构仍然具有挑战性(例如,几毫米,与许多生物逻辑组织的特征大小相当)。与MIL-Limeter尺度的结构刚度相比,随着尺寸的缩小,驱动材料整合的难度会增加,并且许多类型的致动力变得太小。在这里,我们提出了电磁驱动和设计策略方案,通过利用力学引导的三维(3D)组装来克服这一挑战,以使当电流的金属或磁性膜整合到毫米尺度的结构中,以使受控的lorentz lorentz lorentz lorentz lorentz lorentz或磁性磁力下的外部磁性磁力在外部磁力上产生。tai的设计以定量建模和开发的缩放定律为指导,允许形成低尺度的3D体系结构,这些体系结构通过远程控制的电磁驱动而显着,可逆,迅速地变形。还可以实现具有多个稳定状态的可重构介质结构,其中去除磁场后保持不同的3D配置。的演示功能装置,该功能装置结合了双层膜中的热导率的同时测量的深层感应,这表明了拟议策略对生物医学信号的多模式感应的有希望的潜力。
EESSD 的使命:利用长期现场实验、DOE 用户设施、建模和模拟、不确定性表征、一流的计算、过程研究以及数据分析和管理,增强地球系统从季节到数十年尺度的可预测性,以便为开发应对国家能源挑战的先进解决方案提供信息。