神经科学的一个核心挑战是阐明大脑功能如何支持意识。在这里,我们将焦点深脑刺激的特定型结合在一起,与整个皮质的fMRI覆盖范围,在清醒和anaes的非人类灵长类动物中。在丙泊酚,sevo ureane或氯胺酮麻醉期间,以及随后通过中央丘脑的电态恢复响应性,我们研究意识的丧失如何影响跨尺度的结构功能组织的分布模式。我们报告说,在麻醉下分布的大脑活动受到跨尺度的大脑结构的限制,与层次层层组织的多个维度的麻醉诱导的崩溃相吻合。在不同的麻醉剂中观察到这些分布的特征,并且通过对中央丘脑的电刺激逆转它们,与唤醒的行为标记的恢复相吻合。在刺激腹侧丘脑的刺激时,没有观察到这种影响,证明了山丘。总体而言,我们确定了特定的丘脑核精心策划的意识的一致分布签名。
Peter Gumbsch 研究材料及其内部结构和特性。他的研究旨在理解变形和断裂过程并建立数学模型,旨在使材料和部件更安全、更可靠、更耐用。他的多尺度材料建模概念将纳米、微观和宏观尺度的机制联系起来,得到了国际认可。
几乎所有科学或工程领域都与材料有关。材料科学是一门跨学科领域,涉及建立原子或分子尺度的材料结构与其宏观性质之间的关系。材料科学研究已经发展到物理学、工程学和应用数学领域的科学家正在研究共同感兴趣的问题的地步。
1。容量:容量:容量数字基于使用1,725 rpm电动机的水。容量将减少约1.5%。2。准确性:准确性:准确性是全尺度的±1%,范围内的10%至100%的容量。3。温度/粘度:温度/粘度:与200°F(93°C)或粘度大于1,000 cp的温度接触工厂。
亚麻(Linum Usitatissimum L.)是一种工业重要性,其纤维目前用于高价值纺织品应用,复合增援部队以及自然致动器。人类对这种纤维丰富的植物的兴趣可以追溯到几千年,包括古埃及,那里的亚麻在各种quotidian物品中广泛使用。尽管亚麻纤维的最新技术发展继续通过科学研究多样化,但《亚麻的历史使用》也为今天提供了丰富的课程。通过仔细检查古埃及和现代亚麻纤维,本研究旨在进行从纱线到纤维细胞壁尺度的多尺度表征,将结构和多糖含量的差异与亚麻的机械性能和耐用性联系起来。在这里,通过扫描电子显微镜和纳米力学研究来丰富多尺度的生化研究。关键发现是纤维素特征,结晶度指数和古代纤维和现代纤维之间的局部机械性能的相似性。从生物化学上讲,单糖肛门,深紫外和NMR的研究表明,古代纤维表现出较少的果胶,但类似的半纤维素含量,尤其是通过尿酸和半乳糖,表明这些非晶体成分的敏感性。
在本研究中,我们通过观察分子水平的化学和电子态、评估微观和宏观尺度的粘合强度以及分子水平,研究了碳纤维复合材料粘合界面粘合力产生的机制。通过了解这一点并系统地了解工艺因素的影响,并评估新的表面改性方法,我们将研究如何获得超越现有技术和方法的粘合强度。
更好地了解影响和控制在海洋环境上方、上方或内部作业物流的过程:•波浪、温度、密度结构、海面高度、潮汐、雾、海冰、强流、内波、能见度、沿海河流羽流……开发知识最终可能改进环境预测模型,提供以小时到几周为时间尺度的预报。
自然语言包含多个时间尺度的信息。要了解人脑如何代表此信息,一种方法是使用从神经网络语言模型(LMS)中提取的表示fMRI对自然语言的反应进行编码模式。但是,这些LM衍生的代表并未在不同的时间表上明确分开信息,因此很难解释编码模型。在这项工作中,我们通过强迫LSTM LM中的单个单位来整合特定时间尺度的信息来构建可解释的多时间尺度表示形式。这使我们能够明确并直接映射每个fMRI Voxel编码的信息的时间尺度。此外,标准fMRI编码过程在编码功能中没有考虑不同的时间属性。我们修改了该过程,以便可以捕获短时和长时间的信息。这种方法超过了其他编码模型,特别是对于代表长时间信息的体素。它还在人类语言途径中提供了时间尺度信息的范围图。这是未来工作的框架,调查了人工和生物语言系统之间的时间层次结构。