摘要:目的:受医疗保健4.0的推动,本研究旨在基于人工提取的特征(包括时域和频域中的统计特征)降低传统脑电特征的维数。方法:使用四阶巴特沃斯滤波器和小波包变换从UNM和Iowa数据集中提取了总共22个多尺度特征。基于单通道验证,从59个公共通道池中选择了R2得分最高的29个通道。在UNM数据集上验证了所提出的通道选择方案,并在Iowa数据集上进行了测试,以将其通用性与未进行通道选择训练的模型进行比较。结果:实验结果表明,所提出的模型实现了100%的最佳分类准确率。此外,通过基于Iowa数据集的样本外测试验证了通道选择方法的泛化能力结论:使用单通道验证,我们提出了一种基于传统统计特征的通道选择方案,最终选择了29个通道。该方案显著降低了帕金森病相关脑电特征向量的维数 50%。值得注意的是,该方法在 UNM 和 Iowa 数据集上都表现出了相当好的分类性能。对于闭眼状态,最高分类准确率为 100%,而对于睁眼状态,最高准确率达到 93.75%。
过去几十年来,微电子行业一直在推动小型化理念的深入人心。更小的设备意味着更快的运行速度、更便携和更紧凑的系统。这种小型化趋势具有感染力,纳米技术和薄膜加工的进步已经蔓延到广泛的技术领域。这些技术进步对一些领域产生了重大影响,包括二极管激光器、光伏电池、热电材料和微机电系统 (MEMS)。这些设备的设计改进主要来自实验和宏观测量,例如整体设备性能。这些设备和材料的微观特性的大多数研究都集中在电气和/或微观结构特性上。目前,许多热问题在很大程度上被忽视,限制了现代设备的性能。因此,这些材料和设备的热性能对于高科技系统的持续发展至关重要。人们对薄膜能量传输机制的了解需求催生了一个新的研究领域,即微尺度传热。微尺度传热只是在必须考虑单个载体或连续模型失效时对热能传递的研究。传热的连续模型经典地是能量守恒定律与热传导的傅立叶定律的结合。类似地,当连续流体力学模型不足以解释某些现象时,就出现了“气体动力学”的研究。微尺度传热领域具有一些惊人的相似之处。相似之处之一是方法论。通常,第一次建模尝试是修改连续模型,以便将微尺度因素考虑在内。更常见且稍微困难的方法是应用玻尔兹曼传输方程。最后,当这两种方法都失败时,通常采用计算详尽的分子动力学方法。下面将更详细地讨论这三种方法和具体应用。图 18.1 演示了电子(金属薄膜中的主要热载体)散射的四种不同机制。所有这些散射机制对于微尺度传热的研究都很重要。块体金属中电子的平均自由程通常在 10 到 30 纳米的数量级上,其中电子晶格散射占主导地位。然而,当薄膜厚度与平均自由程数量级相同时,边界散射就变得很重要。这被称为尺寸效应,因为薄膜的物理尺寸会影响传输特性。薄膜可以使用多种方法并在各种条件下制造。这可能会对薄膜的微观结构产生严重影响,进而影响缺陷和晶界散射。最后,当被超短脉冲加热时,电子系统会变得非常热,以至于电子-电子散射会变得非常明显。因此,微尺度传热需要考虑微观能量载体和各种可能的散射机制。
能力:从20升实验室发酵罐到30,000升发酵罐。材料:316L不锈钢,耐腐蚀性和适合GMP和FDA合规性。Techmi Bio Techmi Group的定制发酵列车旨在最大程度地提高生物技术,制药,食品和生物能源工业流程的效率和生产力。这些系统集成了不同体积的发酵罐,从实验室设备到大型发酵罐,非常适合在线生产乘积。溶解氧(DO):从0%到100%控制,准确性为±0.1%。TechMi Group的自定义发酵列车旨在高技术标准DS,以确保在过程的每个阶段的最佳性能。这些系统提供的关键技术参数包括:容量:从20升实验室发酵罐到30,000升发酵罐。材料:316L不锈钢,耐腐蚀和适用于GMP和FDA Comprian CE。温度控制:准确至±0.1°C,适合每个过程的要求。
简化生命周期评估 (SLCA) 通常在成品规模上进行。但是,也可以对组件或子系统(规模向下移动)或公司的所有产品(规模向上移动)执行 SLCA。与生物生态学类似,不同规模的分析似乎会提出不同的问题并揭示不同的见解。在本研究中,通过比较子系统、产品和公司级别的高性能飞机的结果来探索多尺度简化 LCA (SLCA)。结果清楚地表明,复杂产品的主要子系统之间的 SLCA 结果存在很大差异,而这些差异无法从系统级 SLCA 中得出,并且不同级别的结果往往服务于不同的公司用户。将单个产品的结果与多个公司产品的结果进行比较时,可以获得类似的好处。因此,多尺度生命周期分析的执行可能会带来相当大的优势。
摘要:锂离子电池(LIBS)正在领导储能市场。由于其固有的性能好处并减少了对运输电动机的环境影响,因此正在做出明显的努力。但是,实现这种广泛采用仍然需要克服影响电池老化和安全性的关键技术限制。电池功能的不可避免的结果,如果没有实施有效的热电池管理策略,则电池功能的不可避免的结果可能会导致过早的性能损失和加剧的安全问题。电池老化效应必须更好地理解和缓解,以利用老化建模方法的预性能力。本评论论文介绍了最新的老化建模方法的全面概述。此外,采用了一种多尺度方法,在粒子,电池和电池组尺度上审查了这些方法,以及在这些尺度上进行LIB衰老建模的相应研究机会。还审查了电池测试策略,以说明如何验证当前的数值老化模型,从而提供整体老化建模策略。最后,本文提出了一个组合的多物理学和基于数据的建模框架,以实现准确且计算上有效的LIB老化模拟。
1 德克萨斯大学奥斯汀分校,生物医学工程,美国德克萨斯州奥斯汀 2 德克萨斯大学奥斯汀分校,心理学,美国德克萨斯州奥斯汀 3 莱斯大学,电气与计算机工程,美国德克萨斯州休斯顿 4 德克萨斯大学奥斯汀分校,机械工程,美国德克萨斯州奥斯汀 5 苏黎世大学,神经经济学和社会神经科学,瑞士苏黎世 6 德克萨斯大学奥斯汀分校,神经病学,美国德克萨斯州奥斯汀 7 华盛顿大学,电气与计算机工程,美国华盛顿州西雅图 8 华盛顿大学,生物工程,美国华盛顿州西雅图 9 德克萨斯大学奥斯汀分校,神经科学研究所,美国德克萨斯州奥斯汀 10 华盛顿国家灵长类动物研究中心,美国华盛顿州西雅图 * 任何通讯均应寄给作者。
绿色氢气是在高峰生产期间由剩余电力产生的,可以注入地下储层并在高需求期间回收。在本研究中,X射线断层扫描技术用于检查重复注入和提取氢气所导致的滞后现象。进行了非稳态实验以评估排水和吸液循环后氢气和盐水的分布:注入停止后立即拍摄流体孔隙空间结构的图像,并在等待16小时无流动后拍摄。使用长度为60毫米、直径为12.8毫米的Bentheimer砂岩样品,在环境温度和1 MPa的孔隙压力下注入氢气。在三个注气和注水循环中,气体流速从2毫升/分钟降低到0.08毫升/分钟,而盐水注入速率保持不变。结果表明,由于溶解在盐水中的气体扩散,存在毛细管压力滞后现象和氢通过奥斯特瓦尔德熟化迁移。这些现象是通过分析界面曲率、面积、连通性和孔隙占有率来表征的。氢气倾向于驻留在较大的孔隙空间中,这与亲水条件一致。流动停止 16 小时后,氢气聚集成较大的神经节,一个大型连通神经节占据了体积的主导地位。此外,欧拉特征在 16 小时后下降,表明连通性有所改善。这项研究意味着,奥斯特瓦尔德熟化(溶解气体的质量输送)导致的滞后现象更少,连通性更好,而忽略这一影响的假设则不然,就像在评估碳氢化合物流动和捕集时所做的那样。
多尺度统计和量子物理 (MSP) 小组 - 有关该小组的更多信息,请访问 https://qtf.fi/research MSP 小组是芬兰量子技术卓越中心的一部分,我们正在寻找有上进心和才华的学生加入我们,参加 2024 年的暑期研究。我们为学士和硕士生提供多个项目。我们希望学生对量子物理、统计力学和热力学有所了解。了解一种或多种数值工具(如 Mathematica、MATLAB/Python)是一种优势,但不是必需的。根据学生的背景、经验和兴趣,我们可以在物理学和应用数学的不同子领域提供几种类型的项目。开放量子系统的热力学(导师 Jishad Kumar 博士)量子物理学的最新技术进步可以轻松地在实验室中实现纳米机电系统、量子点(或量子阱)、纳米热机或冰箱。当系统尺寸相当小(例如纳米或中观系统)时,将它们与周围环境隔离是不可能的。这意味着小系统(或其中的一部分)与其环境有显著的耦合。经典开放系统的正则状态仍然是吉布斯状态,因为与系统相当大的热能相比,耦合能量很容易被忽略。然而,在极低的温度下,特别是当量子效应占主导地位时,这种耦合能量是不能被忽略的。这可能会引发人们对已知热力学定律的有效性以及如何在这种情况下定义热力学量的质疑。