摘要。尾流效应是风电场设计和分析中的一个关键挑战。对于浮动风电场,平台在涡轮机的气动载荷下发生偏移,并受到系泊系统的约束,系泊系统的允许偏移量可能有很大变化。当考虑尾流转向时,涡轮机的侧风偏移可以抵消尾流的横向偏转。这项工作提出了一种工具,可以有效地模拟浮动风电场尾流转向和平台偏移的耦合影响。该工具依赖于频域风电场模型 RAFT 和稳态尾流模型 FLORIS。使用 FAST.Farm 进行了验证,然后将该工具应用于一个简单的双涡轮机案例研究。在比较对涡轮机功率的影响时,考虑了一系列具有增加的平台偏移和不同偏航错位角的系泊系统。探讨了对涡轮机间距和系泊系统方向的其他敏感性。结果表明,顺风涡轮机发电存在一个最不理想的观察圈宽度,该宽度随偏航错位角和涡轮机间距而变化。此外,偏航失准条件下的涡轮机偏移量会因系泊系统相对于转子平面的方向而发生显著变化,进而影响最佳失准角。这些结果凸显了在评估浮动风力发电机组的尾流转向策略时考虑浮动平台偏移量和系泊系统的重要性。
摘要 — 风电作为一种绿色能源,正在全球范围内迅速发展,同时,为缓解风电波动性而部署的储能系统 (ESS) 也应运而生。风电和储能系统的容量确定已成为一个亟待解决的重要问题。风电场的尾流效应会导致风速不足和下游风力涡轮机发电量下降,然而,这在电力系统的容量确定问题中很少被考虑。本文提出了一个双目标分布稳健优化 (DRO) 模型,用于确定考虑尾流效应的风电和储能系统的容量。建立了一个基于 Wasserstein 度量的模糊集来表征风电和需求的不确定性。具体而言,风电不确定性受第一阶段确定的风电容量的影响。因此,所提出的模型是一个具有内生不确定性(或决策相关不确定性)的 DRO 问题。为了求解所提出的模型,开发了一种基于最小 Lips-chitz 常数的随机规划近似方法,将 DRO 模型转化为线性规划。然后建立了迭代算法,并嵌入了求取最小Lipschitz常数的方法。案例研究证明了考虑尾流效应的必要性和所提方法的有效性。
4 Department of Disaster Psychiatry, International Research Institute of Disaster Sciences, Tohoku University, Sendai, Japan, 5 Department of Radiological Imaging and Informatics, Tohoku University Graduate School of Medicine, Sendai, Japan, 6 Department of Management Science and Technology, Graduate School of Engineering, Tohoku University, Sendai, Japan, 7 Department of Health Record Informatics, Tohoku University Tohoku Medical Megabank Organization, Sendai, Japan, 8日本仙台的东北大学Tohoku University Megabank组织公共关系与计划系,日本仙台的Tohoku University Tohoku University Tohoku University Tohoku University tohoku University tohoku University Mediage Megabank组织,日本Sendai,Tohoku University of Medicine of Medicine,日本日本妇产科,日本妇产科,日本妇产科攻击部门,曾经iSdemics Interymics oferation oferation oferation Noferation oferation oferation offeratieformic overative多,十九号。国际研究所灾难科学研究所,日本仙台,国际灾难科学研究所,13
摘要。由于全球海上风电装机容量快速增长,单个风电场的规模也在不断扩大。这对预测能源产量的模型提出了挑战。例如,当前一代尾流模型大多是在现有规模小得多的风电场上校准的。这项工作利用大气大涡模拟分析了未来多千兆瓦风电场的年能源产量和尾流损失。为此,针对一系列假设的 4 GW 海上风电场场景模拟了 1 年的实际天气。这些场景在应用的涡轮机类型、安装容量密度和布局方面有所不同。结果表明,当单个涡轮机的额定功率较大时,在总安装容量保持不变的情况下,生产数量会显著增加。即使对于额定功率相似但功率曲线略有不同的涡轮机类型,也发现生产存在显著差异。虽然风速被确定为决定气动损失的最主要因素,但已确定大气稳定性和边界层高度的明显影响。通过分析第一排涡轮机的损耗,全球年平均阻塞效应估计在 2% 到 3% 之间,但在稳定分层条件和风速约为 8 ms − 1 时,阻塞效应可达到 10% 以上。本研究使用高保真建模技术,深入了解未来多千兆瓦风电场在全年真实天气条件下的性能。
1 Whiffle, Molengraaffsingel 8, 2629 JD 代尔夫特,荷兰 2 代尔夫特理工大学,工程系统与服务系,Jaffalaan 5, 2628 BX 代尔夫特,荷兰 3 代尔夫特理工大学,地球科学与遥感系,Stevinweg 1, 2628 CN 代尔夫特,荷兰
摘要 减少航运排放的需要迫在眉睫。未来的潜在燃料候选包括氢气和甲醇。本研究试图通过采用自下而上的方法来量化燃料消耗和排放,对这两种燃料类型进行公平的比较。以一艘液化天然气运输船进行的 10,755 海里的航程作为案例研究。为氢燃料电池能源系统和重整甲醇燃料电池能源系统开发了模型。模拟计算了每种方案的燃料需求和尾气排放量。然而,由于氢气和甲醇都不是自然产生的,因此还应考虑生产这些燃料所需的能量。已经模拟了三种生产方法:带电解的风力涡轮机;带电解的电网供应;蒸汽甲烷重整。此后,计算了每种燃料方案的总生命周期排放量并将其与现有船舶进行比较。通常,这被称为油井到尾流的排放,但对于绿色燃料,风电场到尾流可能更合适。结果表明,改用甲醇最多可减少 8.3% 的尾气排放和 18.8% 的风力发电厂尾气排放,但前提是燃料完全由可再生能源生产。液氢燃料电池能源系统产生的风力发电厂尾气排放为零,所需的可再生能源比甲醇少 33.3%。术语
大涡模拟 (LES) 已用于研究飞机编队后方 10 分钟内的远场四涡尾流涡旋演变情况。在编队飞行场景中,尾流涡旋行为比传统的单架飞机情况复杂、混乱且多样,并且非常敏感地取决于编队几何形状,即两架飞机的横向和垂直偏移。尽管在各种编队飞行场景中尾流涡旋行为的个案变化很大,但涡旋消散后的最终羽流尺寸通常与单架飞机场景有很大不同。羽流深约 170 至 250 米,宽约 400 至 680 米,而一架 A350/B777 飞机将产生 480 米深和 330 米宽的羽流。因此,编队飞行羽流没有那么深,但它们更宽,因为涡流不仅垂直传播,而且沿翼展方向传播。两种不同的 LES 模型已被独立使用,并显示出一致的结果,表明研究结果的稳健性。值得注意的是,二氧化碳排放只是航空气候影响的一个因素,还有其他几个因素,如凝结尾迹、水蒸气和氮氧化物的排放,这些都会受到编队飞行的影响。因此,我们还强调了年轻编队飞行凝结尾迹与经典凝结尾迹在冰微物理和几何特性方面的差异
完善指导、安全案例和支持静态成对离港分离矩阵监管的材料。根据交通组合和成对矩阵中新飞机类型的纳入情况,制定(即监管和相关安全案例)基于更多类别或不同类别的精细分离最小值方法,以更适合当地机场环境。支持监管部门批准的安全证据、进一步增加效益的细化以及允许促进与可选监管推动因素相对应的部署的整合
RTS3a:在混合跑道运行下,使用优化跑道交付(ORD)工具评估进场静态成对分离(S-PWS-A)加上使用优化分离交付(OSD)工具评估离场静态成对分离(S-PWS-D)的验证; RTS4a:在混合跑道运行下,使用优化分离交付(OSD)工具评估进场静态成对分离(S-PWS-D)的验证; RTS4b:在隔离和部分隔离跑道运行下,在使用 CSPR 的双重进近环境中,使用优化分离交付(OSD)工具评估进场静态成对分离(S-PWS-A)加上使用优化分离交付(OSD)工具评估离场静态成对分离(S-PWS-D)的验证; RTS5:验证离场静态成对分离间隔(S-PWS-D)和离场天气相关分离间隔(WDS-D),及其与隔离模式下单跑道离场优化分离交付(OSD)工具的集成(伦敦希思罗机场); RTS6:验证离场基于静态飞机特性的尾流湍流分离(S-PWS-D),及其与离场优化分离交付(OSD)工具和到达进场天气相关分离(WDS-A)的集成,及其与到达分离交付工具的集成。
人们认为,海山通过非稳定尾流过程和产生内波来促进海洋混合,内波从海山传播出去,然后断裂。对于均匀正压流 U 中的理想孤立海山(特征宽度为 D 和高度为 H ),研究了这些过程的相对重要性。使用一系列科里奥利参数 f 和浮力频率 N,以便考虑低弗劳德数( U / NH )和低罗斯贝数( U / fD )的宽参数空间。结果表明,在这一参数空间范围内,涡旋过程在能量上主导内波能量通量。专门研究了内波场,将其划分为稳定背风波和非稳定尾流产生的波。结果发现,现有的分析理论无法解释背风波能量通量。然后将 Smith 的背风波模型扩展到低弗劳德数区域,并考虑旋转的影响。虽然此前的强分层实验表明,只有障碍物的顶部 U / N 会产生内波,但旋转的影响似乎会改变这种造波高度。一旦修改 U / N 高度以考虑旋转,扩展的 Smith 模型就可以合理准确地再现背风波能量通量。