本文介绍了亚音速下振荡半球形炮塔下游尾流响应的实验研究。振荡炮塔由安装在铝制矩形板上的炮塔外壳组成。炮塔组件设计为使炮塔以单一频率沿翼展方向振荡,与主要尾流模式的主频率一致。流体的基于共振的气动弹性响应导致炮塔沿翼展方向受迫振荡。安装在炮塔组件不同位置的多个加速度计用于测量局部位移。结果表明,炮塔以固定频率振荡,振荡频率范围为 0.3 至 0.55 马赫数,振荡幅度约为 1 毫米。在炮塔下游的隧道壁上放置了几个非稳定压力传感器,用于研究振荡炮塔的尾流响应。研究发现,与固定炮塔下游的尾流相比,振荡炮塔的压力波动能量较小,尾流在翼展方向上更加有序。
摘要。稳定分层流条件通常表现出风向转向,即风向随高度变化。当风力涡轮机经历这种转向流时,产生的尾流结构往往会呈现出拉伸成椭圆形,而不是对称形状或卷曲形状。观察研究表明,尾流转向的幅度小于流入流的转向,而使用执行器盘模型和执行器线模型进行的大涡模拟表明流入流转向和尾流转向之间存在一系列关系。在这里,我们展示了一系列大涡模拟,其中有一系列转向形状、一系列转向幅度、一系列风速和风力涡轮机转子的两个旋转方向,以研究对尾流偏转角的影响。这些结果可以指导尾流转向在稳定分层流中的应用。
摘要 本研究重点研究了确定作用于具有自适应机翼几何形状(变形几何形状)的微型飞行器 (MAV) 的空气动力的实验和分析方法。本设计的目标是通过使用智能材料修改机翼的弯曲度和厚度,以在飞行阶段实现最佳自主性或航程。因此,研究了最相关的变形配置。它们由马德里理工大学 (UPM) 通过增材制造设计和制造,并在国家航空航天技术研究所 (INTA) 的低速风洞中进行了测试。粒子图像测速技术用于研究不同变形配置的尾流结构。实验测试以 10 m/s 的自由流速度针对从 0º 到 30º 的几个攻角进行。采用了两种理论方法:横向动能积分和 Maskell 理论;分别用于确定诱导阻力系数和升力系数。对模型后面的尾涡系统进行了完整的定性和定量研究,以了解变形几何的气动行为。
图 1. 近尾流湍流强度分布 [1] ...................................................................................................... 2 图 2. 远尾流湍流强度分布 [2] ...................................................................................................... 3 图 3. 2.06 倍叶片直径处的相对湍流强度 [3] ...................................................................................... 4 图 4. 近尾流轴向速度云图(左)和切向速度云图(右) [4] ............................................................. 5 图 5. 2.5 倍涡轮机直径处的实验和 CFD(LES)湍流强度 [6] ............................................................. 6 图 6. CFD(LES)湍流图 7. 基本风洞示意图 ...................................................................................................................................... 8 图 8. 蜂窝类型 [7] ...................................................................................................................................... 11 图 9. 湍流减少因子 [10] ............................................................................................................................. 15 图 10. 用于模型风力涡轮机的 NACA 4412 叶片 ............................................................................................. 23 图 11. 模型风力涡轮机轮毂 .............................................................................................
本文概述了欧盟资助的 Horizon 2020 合作项目 CENTRELINE(“机身尾流填充推进集成概念验证研究”)正在进行的研究及其中期结果,旨在展示一种突破性的协同推进机身集成方法的概念验证,即所谓的推进机身概念 (PFC)。该概念的特点是将涡轮电力驱动的推进装置集成在机身的最后部分,专用于机身尾流填充。目前,CENTRELINE 处于 TRL 1-2 阶段,其目标是将 PFC 的技术关键特性成熟到 TRL 3-4 阶段。目标概念验证的核心由两个实验测试活动组成,这些测试活动由高保真 3D 数值模拟和集成多学科设计优化技术提供支持,用于空气动力学、航空结构以及能源和推进系统。
本文介绍了背景信息,并提供了联邦航空管理局 (FAA) 尾流湍流计划 RECAT(即重新分类)特定方面的状态更新。RECAT 的基本前提是,可以使用更完整的尾流相关参数集来改进尾流分离,而不是使用基于最大起飞重量的现有 FAA Order JO 7110.65 分类尾流湍流分离最小值。然后,此过程可以安全地降低尾流湍流分离最小值,使其低于 FAA Order JO 7110.65 中规定的最小值。本文介绍了 RECAT 的整体三阶段方法,最终目标是实现动态成对分离。目前,第二阶段或基于静态成对的尾流湍流分离已准备好由联邦航空管理局实施。本文介绍了分析方法,包括 RECAT 第二阶段开发中使用的数据源和严重程度指标。
研究需求文件是专题网络 WakeNet2-Europe 的最终交付成果,是第六框架计划的一部分(合同编号 G4RT-CT-2002-05115)。WakeNet2-Europe 合作伙伴的专业知识涵盖了尾流湍流相关问题的整个范围,包括例如研究如何通过升力翼测量产生涡流,以及在真实操作环境中模拟重要的气象因素对涡流动力学实施的影响。虽然正在考虑的现象非常复杂,但基本问题是需要什么程度的细节才能掌握具有挑战性的操作尾流湍流相关问题。特别是,基于正式安全评估的新程序的批准在这里起着至关重要的作用。本文档描述了一组专家(基本上是 WakeNet2-Europe 合作伙伴)对尾流湍流领域的“研究需求”,并从一些外部方(例如 WakeNet-USA)那里获得了宝贵的意见。第一部分概述了尾流问题,该问题的特点是尾流遭遇风险与机场和空域容量之间的平衡。介绍了一些在不影响安全性的情况下提高容量的方案(CONOPS),然后讨论了改进评估安全问题的方法所需的研究。第二部分提供了更详细的信息,以阐明为什么需要在各个领域进行具体研究。它将特别有助于