局部和时间周期动力学与随机幺正有多相似?在本研究中,我们使用量子计算中的 Clifford 形式来解决这个问题。我们分析了一个无序的 Floquet 模型,该模型的特点是在一个空间维度中存在一系列局部、时间周期和随机量子电路。我们观察到,演化算子在周期的半整数倍时享有额外的对称性。据此,我们证明,在扰乱时间之后,即当任何初始扰动传播到整个系统时,当所有量子位都用 Pauli 算子测量时,演化算子无法与 (Haar) 随机幺正区分开来。这种不可区分性随着时间的推移而降低,这与更受研究的 (时间相关) 随机电路的情况形成了鲜明对比。我们还证明了 Pauli 算子的演化表现出一种混合形式。这些结果要求局部子系统的维度很大。在相反的状态下,我们的系统显示出一种新颖的局部化形式,它是由有效的单侧壁产生的,它可以防止扰动从一个方向穿过侧壁,但不能从另一个方向穿过侧壁。
摘要:大型强关联系统的量子化学计算通常受到计算成本的限制,而计算成本会随系统规模呈指数级增长。专为量子计算机设计的量子算法可以缓解这一问题,但所需的资源对于当今的量子设备来说仍然太大。在这里,我们提出了一种量子算法,该算法将化学系统的多参考波函数的局部化与量子相位估计 (QPE) 和变分酉耦合簇单重和双重 (UCCSD) 相结合,以计算其基态能量。我们的算法称为“局部活性空间酉耦合簇”(LAS-UCC),对于某些几何形状,该算法与系统规模呈线性关系,与 QPE 相比,总门数减少了多项式,同时提供的精度高于使用 UCCSD 假设的变分量子特征求解器,也高于经典的局部活性空间自洽场。 LAS-UCC 的准确性通过将 (H 2 ) 2 分解为两个 H 2 分子以及通过破坏反式丁二烯中的两个双键来证明,并且提供了最多 20 个 H 2 分子的线性链的资源量估计。■ 简介
透皮药物输送系统(TDDS)是一种广泛接受的药物输送方法,由于各种优势和通过完整皮肤全身递送药物的新型途径之一。局部药物给药是一种通过皮肤输送药物的系统性和局部化方法,被认为是口服和肠胃外途径的有吸引力的替代方法。目前的研究的目的是通过溶剂蒸发技术制备卡马西平的基质类型透皮药物输送系统(TDDS)。使用HPMC E-15,Eudragit RL-100和乙基纤维素不同比率的组合制备了几批。丙二醇被用作增塑剂,DMSO被掺入渗透剂增强剂。这些配制的经皮斑块的特征是其物理化学参数,例如厚度,重量变化,折叠耐力,水分吸收百分比,水分吸收百分比和体外药物释放研究。在上面的所有配方中,选择了最佳配方,因为这种优化的配方显示出令人满意的药物含量,其厚度,重量均匀性,水分含量百分比,水分摄入百分比和药物释放的最高百分比,即12小时内的93.95%。优化的配方(F6)显示出最大的药物释放百分比。
荧光标签的光漂白在单分子和超分辨率显微镜下构成了主要限制。常规的光稳定方法,例如去除氧气和添加高浓度的光稳定添加剂,通常需要仔细的荧光团选择,并且可能破坏生物学环境。为了解决这些局限性,我们开发了一种模块化和微创光稳定方法,该方法利用了DNA介导的光稳定剂直接传递到成像位点。在较低的激发强度下,DNA介导的策略优于基于溶液的方法,以显着较低的添加剂浓度实现有效的光稳定。然而,在较高的激发强度下,单个光稳定器分子的稳定性成为限制因素。为了克服这一点并减少了DNA-Paint实验中的局部化损失,我们还实施了恢复方案,在成像位点不断补充光稳定剂。我们进一步扩展了细胞成像的方法,证明了3D-DNA涂料测量中的定位率和精度提高了。DNA介导的光稳定化为禁止高添加剂浓度的成像应用提供了有希望的解决方案。其模块化启用适应性
穿透金属装甲的射弹会使材料处于复杂的应力状态,从而导致装甲失效。金属装甲可能发生多种类型的失效(Backman 和 Godsmith,1978 年),但许多研究都集中于剪切塞失效机制,这是导致装甲钢的抗弹性能降低的原因。剪切塞被归类为低能量失效,通常由钝头射弹或钝碎片的撞击引起(Cimpoeru,2016 年)。对装甲钢目标进行的许多微观结构观察表明目标内部存在绝热剪切带(Solberg 等人,2007 年)。通常,如果存在高应变率载荷下局部塑性变形的有利条件,则可能发生绝热剪切。当冲击引起的变形发生得如此之快,以致热软化超过目标材料的加工和应变速率硬化时,变形将局限于强烈剪切的狭窄区域,即绝热剪切带 (ASB)。根据研究 (Guo et al ., 2020),ASB 的形成步骤如下:应力崩塌、应变局部化、温度升高、剪切带起始和裂纹形成。给定材料中存在 ASB 的必要条件是发生热机械不稳定性,表现为塑性流动应力随变形值的增加而降低。
炎症性肠病 (IBD) 的治疗主要通过口服或静脉注射治疗药物实现。[4,5] 可以使用的药物种类繁多,包括氨基水杨酸、皮质类固醇、免疫抑制剂和各种生物大分子。[6–8] 这些药物具有无数不良副作用,限制了患者的治疗过程。[9–11] 例如,皮质类固醇的治疗时间限制为 3 个月左右,以减轻骨质疏松症等疾病的可能性[12,13],而免疫抑制剂会增加对机会性感染的易感性。[14] 存在大量副作用的部分原因是需要较大的全身剂量才能在胃肠道内达到有效治疗浓度。使用局部活性药物(如皮质类固醇)对炎症病变进行局部治疗,是减少必要药物剂量和对抗与静脉和口服非部位特异性治疗相关的不良全身副作用的一种方法。[13,15–17] 高度局部化的局部治疗还可以通过减少剂量来降低药物成本,从而为创新给药方式相关的成本腾出空间。现有的商业技术可以改善胃肠道内药物释放的定位。其中一种技术是 pH 敏感的肠溶衣,如 Evonik Eudragit L100,
• 天气条件可以决定能源供应和需求。例如,持续高压导致的夏季风旱*既会减少能源供应,也会推高公共和私人空间的制冷能源需求。 • 极端天气条件会影响可再生能源的运营和生产。 • 英国可再生能源部门未来对复合低风和低太阳能事件的适应能力需要进一步考虑,特别是如果复合事件连续几年持续的话。 • 传统预测更适合预测风力发电,因为类似的风力条件通常在地理上分布广泛。然而,影响太阳能发电的条件,如云层覆盖或气溶胶,可能更加局部化。与传统预测相比,局部建模可能更适合预测太阳能发电。 • 随着可再生能源基础设施的扩大,可再生能源发电能力不断提高,对存储的需求减少。然而,始终需要保持一定的存储容量。 • 通过使用跨越多年的历史数据作为模型的输入,可以改进对未来天气状况的预测,但也需要考虑十年变化和长期气候变化。 • 专家之间建立气象和能源生产合作的额外机制将是有益的,更广泛地宣传现有机制也将大有裨益。 • 数据生产者和数据接收者需要有效沟通,以确保数据集同质化,便于交换和使用。 1. 当前能源部门的脆弱性 1.1 可能限制风能和太阳能供应的天气条件
扩展系统(晶体和无序系统)并可用于理解化学键合;表征电极化、磁化和拓扑;并作为最佳基组,在倒易空间或实空间中提供精确插值。本综述总结了当前基于 Wannier 函数的技术、材料特性和模拟代码的概况,这些技术、材料特性和模拟代码已向研究界开放,现已很好地集成到所谓的 Wannier 函数软件生态系统中。首先,介绍 Wannier 函数的理论和实用性,从它们广泛的适用领域开始,适用于使用最大局部化以外的替代方法的高级最小化方法。然后定义了 Wannier 生态系统的概念及其与许多量子模拟引擎和后处理包的交互和互操作性。本评论重点介绍了这种生态系统所赋予的一些关键特性和功能(从带插值和大规模模拟到电子传输、浆果学、拓扑、电子-声子耦合、动态平均场理论、嵌入和 Koopmans 函数),最后总结了互操作性和自动化的现状。本评论旨在强调代码背后的基本理论和概念,同时提及更深入的参考文献。它还阐明了代码之间的关系和联系,以及在相关情况下,其开发策略背后的不同动机和目标。最后,展望了未来的发展,并对整个软件生态系统的生物多样性和可持续性目标发表了评论。
摘要:本研究调查了跨参与者和跨会话的迁移学习,以在连续手部轨迹解码的背景下最大限度地缩短脑机接口 (BCI) 系统的校准时间。我们重新分析了一项涉及 10 名健全参与者、为期 3 个会话的研究的数据。采用留一参与者 (LOPO) 模型作为起始模型。采用递归指数加权偏最小二乘回归 (REW-PLS) 来克服由于训练数据池庞大而导致的内存限制。我们考虑了四种场景:无更新的广义 (Gen)、具有累积更新的广义 (GenC) 以及具有累积 (IndC) 和非累积 (Ind) 更新的个别模型,每个模型都使用传感器空间特征或源空间特征进行训练。广义模型(Gen 和 GenC)的解码性能低于偶然水平。在个体模型中,累积更新 (IndC) 相对于非累积模型 (Ind) 没有显著改善。性能表明解码器无法在此任务中跨参与者和会话进行推广。结果表明,尽管源空间特征中有额外的解剖信息,但传感器空间个体模型可以实现最佳相关性。在 Ind 模型中,解码模式在三个会话中显示出围绕楔前叶的更局部化的模式。
摘要:儿童能够检索单词含义并将其纳入句子的能力,以及支持这些技能的神经结构,在整个青春期都在不断发展。theta(4-8 Hz)活动与儿童的单词检索相对应减少,并随着年龄的增长而变得更加局部。这个自下而上的单词检索通常与伽马(31-70 Hz)的变化配对,这被认为反映了成人的语义统一。在这里,我们在句子处理过程中使用EEG时间 - 频率(8-15岁)研究了伽玛的参与度,以揭示句子处理期间伽马网络的发展轨迹。儿童在很大程度上依靠语义整合来理解句子,但是随着他们成熟,语义和句法处理单元的成熟和局部化。我们观察到11岁左右的γ振荡发生了类似的发育变化,年轻的组(8-9和10-11)表现出宽广的分布的伽马活性,具有较高的幅度,而年龄较大的组(12-13和14-15)(12-13和14-15)表现出较小,更局部的伽玛活性,尤其是在左中央和后部地区。我们将这些发现解释为支持以下论点:与年龄较大的孩子相比,年幼的孩子更严重地依赖语义过程来理解句子。和成人一样,儿童的语义处理与伽马活性有关。