许多人脑的临床和研究都需要精确的 MRI 结构分割。虽然传统的基于图谱的方法可以应用于来自任何采集部位的体积,但最近的深度学习算法只有在对训练中使用的相同部位的数据(即内部数据)进行测试时才能确保高精度。外部数据(即来自看不见的部位的看不见的体积)的性能下降是由于部位间强度分布的变化,以及不同 MRI 扫描仪模型和采集参数导致的独特伪影。为了减轻这种部位依赖性(通常称为扫描仪效应),我们提出了 LOD-Brain,这是一个具有渐进细节层次(LOD)的 3D 卷积神经网络,能够分割来自任何部位的大脑数据。较粗的网络级别负责学习有助于识别大脑结构及其位置的稳健解剖先验,而较细的网络级别则细化模型以处理特定部位的强度分布和解剖变化。我们通过在前所未有的丰富数据集上训练模型来确保跨站点的稳健性,该数据集汇集了来自开放存储库的数据:来自大约 160 个采集站点的近 27,000 个 T1w 卷,规模为 1.5 - 3T,来自 8 至 90 岁的人群。大量测试表明,LOD-Brain 产生了最先进的结果,内部和外部站点之间的性能没有显著差异,并且对具有挑战性的解剖变异具有稳健性。它的可移植性为跨不同医疗机构、患者群体和成像技术制造商的大规模应用铺平了道路。代码、模型和演示可在项目网站上找到。
深度神经网络作品(DNN)的一个长期问题是了解他们令人困惑的概括能力。We approach this prob lem through the unconventional angle of cogni tive abstraction mechanisms , drawing inspiration from recent neuroscience work, allowing us to define the Cognitive Neural Activation metric (CNA) for DNNs, which is the correlation be tween information complexity (entropy) of given input and the concentration of higher activation values in deeper layers of the network.CNA具有高度预测的概括能力,在对近200个网络实例的广泛评估中进行基于规范和偏见的概括指标,其中包括数据集构造组合的广度,尤其是在存在加性噪声的情况下,并且存在/或培训标签被损坏。这些强大的EM PIRICAL结果表明,CNA作为概括度量的有用性,并鼓励对信息复杂性与更深层次网络中的表示之间的联系进行进一步研究,以便更好地了解DNN的概括能力。1