吉西他滨是治疗胆道癌 (BTC),包括胆囊癌 (GBC) 和胆管癌 (CCA) 的有效化疗药物。然而,目前很少有其他有效药物可用,特别是对于 GEM 难治性 BTC。我们之前已发现 microRNA-451a (miR-451a) 是 GBC 的潜在治疗靶点。为了阐明 miR-451a 的抗肿瘤作用及其潜在机制,我们将 miR-451a 转染到 GBC、吉西他滨耐药 GBC (GR-GBC) 和吉西他滨耐药 CCA (GR-CCA) 细胞系中。此外,模拟体内条件,采用致瘤 GBC 类器官和三维 (3D) 细胞培养系统来研究 miR-451a 对 BTC 的抗增殖作用及其对干细胞特性的影响。我们发现,miR-451a 显著抑制了 GBC 和 GR-GBC 中的细胞增殖、诱导了细胞凋亡并减少了化学抗性表型(例如上皮-间质转化)。主要机制可能是磷脂酰肌醇 3-激酶/AKT 通路的负调节,部分是通过直接下调巨噬细胞迁移抑制因子来实现的。基因表达综合数据库显示,miR-451a 是 CCA 组织中下调最显著的 microRNA。引入 miR-451a 在 GR-CCA 中产生了类似的抗肿瘤作用。此外,miR-451a 降低了 3D 球体模型和致瘤性 GBC 类器官中的细胞活力。这些发现表明,补充 miR-451a 是 GEM 难治性 BTC 的潜在治疗策略。
科学相机满足物理和生命科学应用的超低噪声、高灵敏度要求。它们通常用于量子计算、天文成像、细胞成像和药物发现应用。滨松利用 30 年的研究经验开发了新型 ORCA-Quest qCMOS 科学相机。这款相机是第一款实现光子数分辨的相机,可以计算每个像素上存在的光电子。由于光子数分辨受噪声性能的严重影响,滨松努力实现 0.27 电子均方根的超低读出噪声。
1. Reyes‑Habito CM、Roh EK。化疗药物的皮肤反应和癌症的靶向治疗:第二部分。靶向治疗。J Am Acad Dermatol 2014;71:217.e1‑217.e11。2. Allegra CJ、Rumble RB、Hamilton SR、Mangu PB、Roach N、Hantel A 等。RL 扩展转移性结直肠癌的 RAS 基因突变检测以预测对抗表皮生长因子受体单克隆抗体疗法的反应:美国临床肿瘤学会。J Clin Oncol 2016;34:179。3. Coppola R、Santo B、Ramella S、Panasiti V。表皮生长因子受体抑制剂的新型皮肤毒性。一例接受西妥昔单抗治疗的转移性结直肠癌患者出现擦烂样皮疹。 Clin Cancer Investig J 2021;10:91-2 4. Lacouture ME。EGFR 抑制剂的皮肤毒性机制。Nat Rev Cancer 2006;6:803-12。5. Eilers RE Jr.、Gandhi M、Patel JD、Mulcahy MF、Agulnik M、Hensing T 等。接受表皮生长因子受体抑制剂治疗的癌症患者的皮肤感染。J Natl Cancer Inst 2010;102:47-53。6. Elmariah SB、Cheung W、Wang N、Kamino H、Pomeranz MK。系统性药物相关性间擦疹和屈侧皮疹 (SDRIFE)。Dermatol Online J 2009;15:3。 7. Weiss D、Kinaciyan T. 甲芬那酸诱发的对称性药物相关性擦擦和屈侧皮疹 (SDRIFE)。JAAD Case Rep 2019;5:89-90。8. Kumar S、Bhale G、Brar BK。氟康唑诱发的对称性药物相关性擦擦和屈侧皮疹 (SDRIFE):一种常用药物的罕见副作用。Dermatol Ther 2019;32:e13130。9. Li DG、Thomas C、Weintraub GS、Mostaghimi A. 强力霉素诱发的对称性药物相关性擦擦和屈侧皮疹。Cureus 2017;9:e1836。10. Moreira C、Cruz MJ、Cunha AP、Azevedo F. 对称性
核苷和核苷酸逆转录酶抑制剂 02192691 3TC 拉米夫定溶液 10MG/ML 第 1 部分 核苷和核苷酸逆转录酶抑制剂 02192683 3TC 拉米夫定片 150MG 第 1 部分 核苷和核苷酸逆转录酶抑制剂 02247825 3TC 拉米夫定片 300MG 第 1 部分 固定剂量组合 02496356 AG-恩曲他滨/替诺福韦 替诺福韦二吡呋酯富马酸盐-恩曲他滨片 200/300MG 第 2 部分 核苷和核苷酸逆转录酶抑制剂转录酶抑制剂 02396769 APO-阿巴卡韦 阿巴卡韦 TAB 300MG 第 1 部分 固定剂量组合 02399539 APO-阿巴卡韦/拉米夫定 阿巴卡韦-拉米夫定 TAB 600/300MG 第 1 部分 固定剂量组合 02416255 APO-阿巴卡韦/拉米夫定/齐多夫定 阿巴卡韦/拉米夫定/齐多夫定 TAB 300/150/300 第 1 部分 蛋白酶抑制剂 02487241 APO-达芦那韦 达芦那韦 TAB 600MG 第 1 部分 蛋白酶抑制剂 02487268 APO-达芦那韦 达芦那韦 TAB 800MG 第 1 部分 固定剂量组合 02468247 APO-依法韦-恩曲他滨-替诺福 依法韦仑/恩曲他滨/替诺福韦片 6/2/3X100 EDS 固定剂量组合 02452006 APO-恩曲他滨/替诺福韦 恩曲他滨/替诺福韦片 200/300MG 第 2 部分 核苷和核苷酸逆转录酶抑制剂 02369052 APO-拉米夫定 拉米夫定片 150MG 第 1 部分 核苷和核苷酸逆转录酶抑制剂 02369060 APO-拉米夫定 拉米夫定片 300MG 部分1 核苷和核苷酸逆转录酶抑制剂 02393239 APO-拉米夫定 HBV 拉米夫定片 100 毫克 第 1 部分 固定剂量组合 02375540 APO-拉米夫定/齐多夫定 拉米夫定/齐多夫定片 150/300 毫克 第 1 部分 核苷和核苷酸逆转录酶抑制剂 02451980 APO-替诺福韦 替诺福韦二吡呋酯富马酸盐片 300 毫克 EDS 核苷和核苷酸逆转录酶抑制剂 01946323 APO-齐多夫定 齐多夫定胶囊 100 毫克 第 1 部分固定剂量组合 02454513 AURO-阿巴卡韦/拉米夫定 阿巴卡韦/拉米夫定片 600/300MG 第 1 部分 蛋白酶抑制剂 02486121 AURO-达芦那韦 达芦那韦片 600MG 第 1 部分 蛋白酶抑制剂 02486148 AURO-达芦那韦 达芦那韦片 800MG 第 1 部分 固定剂量组合 02478404 AURO-依法韦韦-恩曲他滨-替诺福 依法韦仑/恩曲他滨/替诺福片 6/2/3X100 EDS 非核苷逆转录酶抑制剂 02418428 AURO-依法韦仑依非韦伦片 600MG 第 1 部分 固定剂量组合 02490684 金-恩曲他滨/替诺福韦 恩曲他滨/替诺福韦片 200/300MG 第 2 部分 固定剂量组合 02414414 金-拉米夫定/齐多夫定 拉米夫定/齐多夫定片 150/300MG 第 1 部分 蛋白酶抑制剂 02318601 金-奈韦拉平 奈韦拉平片 200MG 第 1 部分 核苷和核苷酸逆转录酶抑制剂 02460173 金-替诺福韦 替诺福韦二吡呋酯富马酸盐片 300MG EDS固定剂量组合 02478579 BIKTARVY BICTEGRAVIR-恩曲他滨-替诺福韦艾拉芬胺片 50/200/25MG EDS 固定剂量组合 02497220 CABENUVA 卡博替拉韦/利匹韦林套装 - 注射 200/300 MG/ML EDS 固定剂量组合 02497247 CABENUVA 卡博替拉韦/利匹韦林套装 - 注射 200/300 MG/ML EDS 融合抑制剂 02299852 CELSENTRI MARAVIROC 片 300MG EDS 融合抑制剂 02299844 CELSENTRI MARAVIROC TAB 150MG EDS 固定剂量组合 02239213 COMBIVIR 拉米夫定/齐多夫定 TAB 150/300MG 第 1 部分 固定剂量组合 02374129 COMPLERA 恩曲他滨/利匹韦林/TENO TAB 200/25/300 EDS 固定剂量组合 02482592 DELSTRIGO 多拉维林/拉米夫定/替诺福韦二吡呋酯 FUMOTAB 100/300/300MG EDS 固定剂量组合 02491753 DOVATO 多鲁替拉维/拉米夫定 TAB 50/300MG EDS非核苷逆转录酶抑制剂 02370603 EDURANT 利匹韦林 TAB 25MG EDS 固定剂量组合 02449498 GENVOYA COBI/EMTRI/ELVIT/TENOFO ALAFE TAB 150/150/200/10MG EDS 非核苷逆转录酶抑制剂 02375931 INTELENCE 依曲韦林 TAB 200MG EDS
rouridine);阿拉伯核苷,例如阿拉伯派(Cytarabine,araC)[4],吉西他滨或2',2'-二氟 - Ro-2'-脱氧胞丁胺[5](图1)和几种嘌呤[6]和氟达拉滨[7]。它们的作用机理涉及核苷-5'-单磷酸盐作为主要活性化合物的形成。核苷单磷酸可以转化为相应的核苷-5'-T-二磷酸,然后通过DNA或RNA聚合酶将其掺入DNA或RNA中,并明显地[8]。一方面,修饰的DNA或RNA产生突变产生非功能基因组[9]。另一方面,核苷-5'-单磷酸可以直接与涉及核苷酸代谢的酶相互作用,从而导致核苷酸池的修饰。这反过来将散发突变的DNA和RNA的量。对于Exmape,Floxuridine单磷酸盐与胸苷酸合酶的辅助中心反应,从而产生不可恢复的共价键[10,11]。这种自杀的共价反应抑制了这种酶,从而减少了核苷酸池中胸苷磷酸盐。这种还原引入了无胸腺氨酸的细胞死亡[12,13]。另外,FDU,ARAC和吉西他滨修饰DNA,并可以吸收DNA拓扑异构酶[14]。
图 2:DLD-1 BRCA2 (-/-) 细胞在菌落形成试验中对 NU1025 表现出选择性敏感性,而对非靶向药物吉西他滨没有选择性。
按研究基础设施名称的字母顺序列出。阿尔托冰池阿尔托大学阿尔托冰与波浪池是一个 40 米 x 40 米的水池,可以产生模型比例的海冰和波浪。它是世界上面积最大的冰池,也是世界上唯一一个可以同时进行冰和波浪实验的宽池。该水池是一个重要的国家和国际设施。气候变暖导致冰况发生变化,并带来了利用冷海区域的新方法。我们的水池在加速绿色转型和减轻冷海地区海上作业相关风险的研究中发挥着重要作用。更详细地说,我们研究例如冰中的海上风力涡轮机、冰区航行船和冰力学。该水池是多功能的,也可用于公开水域测试。除了我们在阿尔托的团队和我们的合作者之外,学生和工业合作伙伴也使用该水池。于韦斯屈莱大学加速器实验室 于韦斯屈莱大学 于韦斯屈莱大学加速器实验室 (JYFL-ACCLAB) 成立于 1992 年,现已发展成为一个世界知名的多用户设施,拥有四台加速器,为大量国内外用户提供离子、电子和光子束。JYFL-ACCLAB 的用户来自多个学科领域,涉及核物理和原子物理、核天体物理和基本相互作用、电子和材料中的辐射效应、离子源开发和等离子体物理、纳米科学、材料特性和薄膜研究。该设施还为工业合作伙伴提供广泛的分析、辐照和专家咨询服务。JYFL-ACCLAB 是一个真正国际化的用户驱动型研究基础设施,是欧洲领先的离子束设施之一,向所有研究人员完全开放。辐射效应设施服务于欧洲航天局和欧洲卫星和航空航天工业。