摘要 —近年来,深度学习 (DL) 对基于脑电图 (EEG) 的运动想象脑机接口 (MI-BMI) 的改进做出了重大贡献。在实现高分类准确率的同时,DL 模型的规模也不断扩大,需要大量的内存和计算资源。这对嵌入式 BMI 解决方案提出了重大挑战,该解决方案应通过本地处理数据来保证用户隐私、减少延迟和低功耗。在本文中,我们提出了 EEG-TCN ET,一种新颖的时间卷积网络 (TCN),它在只需要少量可训练参数的情况下实现了出色的准确率。其低内存占用和低推理计算复杂度使其适合在资源有限的边缘设备上进行嵌入式分类。在 BCI 竞赛 IV- 2a 数据集上的实验结果表明,EEG-TCN ET 在 4 类 MI 中实现了 77.35% 的分类准确率。通过为每个受试者找到最佳网络超参数,我们进一步将准确率提高到 83.84%。最后,我们在 Mother of All BCI Benchmarks (MOABB) 上展示了 EEG-TCN ET 的多功能性,这是一个包含 12 个不同 EEG 数据集和 MI 实验的大规模测试基准。结果表明,EEG-TCN ET 成功地推广到单个数据集之外,在 MOABB 上的表现比目前最先进的 (SoA) 好 0.25 倍。索引术语 — 脑机接口、运动意象、深度学习、卷积神经网络、边缘计算。
2024 年 7 月 30 日 — HANA 微电子集团,高科技制造面积合计超过 1,000,000 平方英尺,年收入超过 7 亿美元。阅读更多关于...
摘要 知识密集型任务对机器学习 (ML) 技术提出了重大挑战。常用的方法,例如大型语言模型 (LLM),在应用于此类任务时往往会表现出局限性。尽管如此,人们已经做出了显著的努力来缓解这些挑战,重点是通过知识图谱 (KG) 来增强 LLM。虽然 KG 在表示知识方面具有许多优势,但它们的开发成本可能会阻碍广泛的研究和应用。为了解决这一限制,我们引入了一个框架,用于使用完善的通用 KG 来丰富小规模领域特定知识图谱的嵌入。采用我们的方法,当链接到大量通用 KG 时,适度的领域特定 KG 可以从下游任务的性能提升中受益。实验评估表明性能显着增强,Hits @ 10 指标最高可提高 44%。这个相对未被探索的研究方向可以催化知识图谱更频繁地融入知识密集型任务中,从而产生更稳健、更可靠的机器学习实现,这比普遍存在的 LLM 解决方案更少产生幻觉。
本文通过利用大型预训练模型来探讨合成数据的潜力,尤其是在面对分布变化时。al-尽管生成模型的最新进展已经阐明了跨分布数据发生的几项先前的作品,但它们需要模型调整和复杂的设置。为了绕过这些缺点,我们介绍了主要的g a a a a a a a a embeddings(doge),这是一个跨分布的插件语义数据augpection框架,几乎没有射击设置。我们的方法以潜在形式提取源和所需数据分布之间的差异,然后引导生成过程,以补充无数多种合成样本的训练集。我们的评估是在几个射击范式下进行亚种群偏移和三个领域适应方案进行的,表明我们的多功能方法改善了各个任务的性能,需要进行动手干预或复杂的调整。Doge铺平了毫不费力地生成遵循测试分布的现实,可转让的合成数据集的道路,从而加强了下游任务模型的现实世界效率。
摘要 - 嵌入式机器学习的新领域使微控制器能够运行复杂的机器学习模型。用于机器学习应用程序的嵌入式设备可以完成行业中的许多任务。尽管对嵌入式系统和机器学习有很多教育内容,但嵌入式ML的教育内容尚未赶上。作者开发了在Udemy上嵌入机器学习的介绍,以尝试通过提供嵌入式系统,机器学习和微小ML的基础来填补该空白。本课程将使用微控制器或学生的移动设备进行交互式声学事件检测项目结束。在课程结束时,学生将能够选择自己的分类和音频,以及训练和部署机器学习模型。这是引入初学者并在嵌入式机器学习领域获得宝贵经验的好方法。
在KHI于2024年5月14日举办的一次召集期间收集了有关指南的反馈,标题为“研究中的居中公平:制定实践策略和确定考虑因素”,以及通过事后调查。召集包括来自堪萨斯州各地的约50名利益相关者,他们审查了这些策略并提供了有价值的反馈,后来又将其纳入了指南。该活动的特色是演讲者EusebioDíaz,M.A。,卫生前进基金会策略,学习与沟通副总裁,来自亚利桑那州立大学的香农·波特略(Shannon Portillo)博士,以及密苏里州肯尼亚大学的M.S.C.R. Bridgette L. Jones,M.S.C.R.。演讲者讨论了研究中的当前公平状态,应对挑战并探索未来的机会。
最新的表示学习研究表明,层次数据将自己带入双曲线空间中的低维和高度信息的表示。但是,即使双曲线嵌入在图像识别方面也收集了,它们的优化也容易出现数值障碍。此外,与传统的Eu-Clidean特征相比,尚不清楚哪种应用将受益于双曲线的隐性偏见最大。在本文中,我们专注于原型双曲神经网络。尤其是,双曲线嵌入的趋势会在高维度收敛到庞加尔e球的边界,并且对这对几乎没有的分类具有影响。我们表明,在常见的双曲半径上获得双曲线嵌入的最佳射击效果。与先前的基准结果相反,我们证明了配备有欧几里德指标的固定radius编码器可以实现更好的性能,而与嵌入式维度无关。
国家理工学院锡金,国家重要的研究所是印度政府在2009年被印度政府的十个新批准的NIT之一。该研究所提供B.计算机科学和工程,电子和通信工程,电气和电子工程,机械工程以及土木工程的技术课程。此外,该研究所在VLSI和嵌入式系统,通信和信号处理,电气和电子工程以及AI和ML中提供M.Tech计划。该研究所还提供M SC。化学和博士学位的计划D计划在所有部门中。目前,NIT Sikkim位于South Sikkim的Ravangla的一个临时校园中,该校园是一个旅游城镇,它通过高速公路与该州其他主要城镇相连,位于Pelling和Gangtok之间。Ravangla位于2100 m的海拔,周围是喜马拉雅地形,以佛陀公园,Temi Tea Garden和Ralong修道院等旅游胜地而闻名。
分散的可再生能源系统(DRES)将可再生能源与能源有效的建筑技术整合在一起,并代表了可持续建筑环境的重要工具。鉴于其技术复杂性,DRE还包括全面的监测系统,可提供重要的机会来优化能源流量并提高能量效率。由于这些原因,研究开发了一系列自动化优化模型和算法,例如关联规则挖掘或故障检测诊断。迄今为止,在这些高级和自动化技术的哪些条件下仍不清楚,最好将其集成以优化DRE。本文提出了一个互补的行业观点,借鉴了瑞士最先进的DRE之一的优化活动的深入案例研究。在五年中,某些优化措施有助于将能源消耗降低55-60%。然而,其他措施的优化能力尚不清楚。案例研究表明,尽管技术方面引起了优化的潜力,但组织方面已经阻止了科学算法的应用,或者至少延迟了科学算法的应用,因此阻碍了这种优化潜力的实现。这些发现呼吁研究人员更好地将技术和运营方面更好地整合到能源系统的优化中,并为决策者,投资者和能源计划者提供重要建议。2021 Elsevier B.V.保留所有权利。
关于FDP:有关人工智能(AI)的教师发展计划(FDP),用于计算机视觉,医学成像应用将帮助教育者和研究人员了解AI基础知识及其如何应用于具有多个安全应用的医学成像技术。参与者将探索机器学习和深度学习概念,专注于使用AI进行医学成像,这有助于诊断,医疗保健,农业,零售和监视系统。AI通过基于面部识别,虹膜识别,指纹分析和语音识别的准确有效的身份验证方法,在计算机视觉中起关键作用。通过实践活动和实例实例,与会者将获得实用技能,可以在教学和研究中有效地使用不同的AI使用AI。在计划结束时,参与者将准备将AI工具集成到他们的工作中,提高他们通过现代技术教授和解决安全挑战的能力。这将通过增强他们在这些关键领域的专业知识和教学能力来使参与者受益。主要课程内容:针对计算机视觉应用程序的最新实施介绍。机器学习基础知识,使用数据预处理和数据可视化。监督和无监督的学习方法,SVM分类,神经网络和应用程序。深度学习方法的简介和基于DL的其他架构及其应用程序。用于计算机视觉,生物特征和医学成像实现的深度学习体系结构。使用Python/Matlab的动手会话。医学图像数据处理和分析。用于生物医学成像,基于CT扫描/MRI的图像分析,眼底和医学图像分类的AI/ML。对象检测/跟踪算法(例如Yolo等),诸如UNET等分段算法等使用张量流/Pytorch识别人类活动/动作/生物识别识别张量流/keras/pytorch/jupyter和colab的基础知识。使用Python/Matlab使用数据预处理和数据可视化。CV和AI算法在硬件平台上实现,例如Jetson Nano,TX2和Pynq等。主持此计划的教师:该计划将由Nit Warangal的教职员工进行;邀请来自IIT/NIT/IIIT的有关领域的院士在该计划中发表讲座。也有望作为课程的一部分提供行业的演讲者。