符合 CFR §§ 91、121 和 135。分析和实施方法与操作规范、监管机构和以下参考资料相称: • 波音喷气式飞机运输性能方法 (D6-1420) • 波音笔记本电脑工具 (BLT) • 性能工程师手册 (PEM) • FAA 飞机飞行手册 (AFM) • 操作手册 (OM) • 飞行计划和巡航控制手册 (FPCCM) • 维护和大修手册 (MM/HM/OV) • 主最低设备清单 (MMEL) • 配置偏差调度清单 (CDDL) • 飞行操作培训系统方法 (SAFOT) • 飞行操作手册 (FOM) • 标准计算机化飞机性能 (SCAP) 根据 FAA 终端入口程序 (TERPs) 制定转弯程序,按照 ARINC 424-13 和 RNP 规范进行编码。根据政府法规和 OEM 开发飞机性能数据。经济贸易/生产力改进研究。
Driving recommendations 175 Anti-theft protection 177 Starting / Switching off the engine with the key 177 Starting / Switching off the engine with Keyless Entry and Starting 179 Electric parking brake 181 Manual gearbox 185 Automatic gearbox 185 Hill start assist 190 Dynamic pack 191 Gear shift indicator 191 Stop & Start 192 Under-inflation detection 195 Memorising speeds 197 Recognition of speed limit signs and recommendation 198 Speed limiter 201 Cruise control 204 Dynamic带有停止功能的巡航控制207距离警报和主动安全制动器215疲劳检测系统219车道出发警告系统221主动车道出发警告系统222盲点监控系统227停车传感器230 Visiopark 1- Visiopark 2 231 Park Park Assist 237
驾驶员协助»驾驶员控制的中央门锁»驾驶员控制后门儿童锁»驾驶员注意警告(DAW)»驾驶员警报监控系统»引擎开始/智能入口系统的启动/停止按钮»发动机固定器»可见车辆识别号(VIN) » Forward Collision Avoidance Assist (FCA 1.5) - City/Pedestrian/ Cyclist/ Junction » Highway Driving Assist (HDA) » High Beam Assist (HBA) » i-Pedal 3.0 » Intelligent Speed Limit Assist (ISLA) » Lane Follow Assist 2 (LFA2) » Lane Keep Assist (LKAS) » Low Washer Fluid Warning » Manual Speed Limit Assist (MSLA) » Parking Distance Warning Sensors (反向和向前)»带有动态指南的反向摄像机系统»后乘员座椅警报»智能巡航控制2具有停止&GO功能(SCC2)»自动降低后视镜»轮胎压力监控系统(TPMS)
根据美国汽车工程师学会 (SAE) 的定义,自动驾驶分为六个级别。这些级别从代表无自动化的 0 级到代表完全自动化的 5 级不等。每个级别都表明自动驾驶技术的发展和实施向前迈出了一步。下面是每个级别的详细说明。在 0 级,没有自动化,驾驶员完全负责控制车辆。虽然车辆可能包括前方碰撞警报或紧急制动等基本系统,但这些系统不被视为自动化,因为它们不承担任何驾驶任务。驾驶员必须执行所有功能,包括转向、制动、加速和驾驶车辆。进入 1 级,我们遇到了自动化的第一阶段,称为“驾驶辅助”。在这个级别,车辆可以协助驾驶员转向或加速和制动,但不能同时进行。例如,自适应巡航控制等功能有助于保持设定的速度,同时调整与前方车辆的距离。车道保持辅助系统还提供轻微的转向调整,以保持车辆在车道上。
正如 [Malmodin/Lunden – 2018] 所指出的,将哪些设备纳入 IoT 子类别似乎有些武断。现代汽车可能是一个很好的例子(参见图 2)。越来越多的嵌入式系统被纳入汽车结构中,尽管它们可能用于不同的目的(舒适和便利、驾驶辅助)或支持执行不同的功能。这些嵌入式系统可能配备通信功能,使汽车能够与其近距离环境或远处平台进行交互,无论是以对等模式(例如自适应巡航控制和碰撞警告、停车/倒车辅助等)还是与互联网(例如远程信息处理、互联网接入、语音识别、GPS、eCall 紧急系统等)交互。在这种情况下,问题是这些设备是否应该全部、部分或全部不被视为信息和通信技术 (ICT) 和媒体和内容部门的一部分。明确连接设备的界限对于确保一致核算 ICT 和内容和媒体 3 部门的足迹以及如何在各个部门之间平衡实现净零目标的努力至关重要。
2实习内容3 2.1周1-adas基本面和功能学习。。。。。。。。。。。。。。。3 2.1.1了解ADA的主要功能。。。。。。。。。。。。。。。。。。。3 2.1.1.1盲点检测(BSD)。。。。。。。。。。。。。。。。。。。。。。4 2.1.1.2自适应巡航控制(ACC)。。。。。。。。。。。。。。。。。。。。5 2.1.1.3车道保持辅助(LKA)。。。。。。。。。。。。。。。。。。。。。。6 2.1.1.4自动紧急制动(AEB)。。。。。。。。。。。。。。。。7 2.1.2了解ADA的组成部分。。。。。。。。。。。。。。。。。。。。。8 2.1.2.1感知层(传感器)。。。。。。。。。。。。。。。。。。。。。。。8 2.1.2.2决策水平。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8 2.1.3了解传感器及其工作方式。。。。。。。。。。。。。。。。。。。8 2.1.4对环境对传感器的影响分析深入。。。。。。。。8 2.2周2-ADAS模拟测试基本框架学习。。。。。。。。。。。。。。9 2.2.1仿真测试框架。。。。。。。。。。。。。。。。。。。。。。。。。。。9 2.2.2仿真软件。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10 2.3周3-ADAS测试标准学习和安排。。。。。。。。。。。。。。。10 2.4周4-仿真测试工具链学习。。。。。。。。。。。。。。。。。。。。。。12 2.4.1仿真测试工具。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。12 2.5周5-拟合测试实用操作。。。。。。。。。。。。。。。。。。。。。。13 2.5.1车辆动力学。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。13 2.6周6- dld自动写作。。。。。。。。。。。。。。。。。。。。。。。。。。。。14 2.7周7 -LDW自动写作。。。。。。。。。。。。。。。。。。。。。。。。。。。。14
1。丰田安全意义有效性取决于许多因素,包括道路,天气和车辆状况。驾驶员对自己的安全驾驶负责。始终注意周围环境并安全开车。有关限制,请参见所有者手册。2。带有行人检测(PD)的预碰撞系统(PC)旨在帮助降低涉及车辆,行人,骑自行车的人或摩托车手的某些额叶碰撞中的碰撞速度和损坏。w/ pd的PC不能替代安全驾驶。系统有效性取决于许多因素,例如车辆,行人,骑自行车的人或摩托车师以及天气,光线和道路状况等许多因素。有关限制,请参见所有者手册。3。带转向辅助的车道出发警报旨在在某些条件下读取可见的车道标记。检测到车道出发时,它提供了视觉/可听见的警报和轻微的转向力。它不是避免碰撞的系统,也不是替代安全驾驶。有效性取决于许多因素,包括道路,天气和车辆状况。有关限制,请参见所有者手册。4。动态雷达巡航控制无法替代安全和细心的驾驶。有关说明和限制,请参见所有者手册。5。车道跟踪辅助(LTA)泳道居中功能旨在读取可见的车道标记并在某些条件下检测其他车辆。只有在DRCC参与时才能运作。6。7。在具有手动变速器的车辆上无法使用。有关限制,请参见所有者手册。紧急驾驶停止系统将无法检测到所有紧急情况,并且只有在动态雷达巡航控制和车道跟踪辅助处于活动状态时才能运行。有关其他限制,请参见所有者手册。道路标志辅助只能识别某些路标。有关限制,请参见所有者手册。8。自动远光灯以高于25 mph的速度运行。有关说明和限制,请参见所有者手册。9。主动驾驶辅助(PDA)旨在检测道路上的某些物体或曲线,并提供柔和的制动和/或转向支撑。PDA不能替代安全驾驶。系统有效性取决于许多因素,例如速度,大小和检测到的物体,天气,光线和道路状况。有关其他限制和详细信息,请参见所有者手册。
在开发过程中,ACC 进一步扩展为协同自适应巡航控制 (CACC),并增加了通过车对车 (V2V) 无线通信在车辆之间进行信息交换的功能。通过向后续车辆提供有关其前车的额外无线信息,增加 V2V 通信已被证明可以减少车辆间距离,同时减弱上游方向的干扰。全自动车辆排,可描述为“跟随领导者”策略,是通过在车辆之间交换有关纵向(加速和减速)和横向(转弯)运动的信息来实现的。在大多数文献中,纵向控制问题和横向控制问题是独立处理的。具体而言,纵向控制问题由 CACC 处理,而横向控制问题则作为车道保持问题处理。通过雷达/激光雷达和 V2V 通信,CACC 可最大限度地减少车辆与前车之间的期望距离和实际距离之间的误差。另一方面,横向控制问题由基于视觉的车道保持系统解决,该系统采用图像处理算法进行车道检测。从车队的角度来看,关于这种车道保持方法有几个需要考虑的因素。首先,
现代车辆可以看作是一个复杂的网络物理系统(CPS),其中车辆动力学与软件控制系统相互作用。自适应巡航控制(ACC)和车道保持控制(LKC),特别是半自主和自主驾驶的基础特征。此类系统的安全分析对于实现车辆自治非常重要。确保在这种复杂的CP中的安全性非常具有挑战性,尤其是在多个子系统,非线性,混合动力学和干扰之间存在相互作用的情况下。本文介绍了使用多模式港口港系统对汽车控制系统安全分析的方法。该方法将哈密顿式功能用作安全和不安全状态的能量水平之间的障碍,并采用被动性证明轨迹无法越过这一障碍。该方法应用于由ACC和LKC组成的车辆动力学的安全分析。目标是确保主机不会与铅车相撞,并且不会滑行。使用硬件中的仿真平台实现和评估控制设计。实验结果证明了安全分析方法,包括实施效应(例如离散和量化)的影响。©2019 Elsevier Ltd.保留所有权利。
ADAS驾驶员辅助系统(DAS)具有Antilock制动器和巡航控制的功能,可追溯到1950年。在2010年左右出现了更高度发达的DAS或ADA版本,随着车道辅助辅助,后交叉交通警察和自动紧急制动。adas功能利用从汽车的外部环境中得出的数据来帮助控制车辆。ADA在较新的汽车中可用,使用自动化的软件和传感器,例如光相机,雷达和激光雷达,以帮助导航并提高驾驶员安全。ADA通过自动化功能,例如照明控制,交通警告,导航援助,电子稳定控制,反锁制动,防锁制动,盲点信息和警告,车道出发警告,适应性巡航控制和牵引力控制来整合自适应功能,从而有助于安全,舒适和便利。此外,ADA可实现碰撞检测和避免行人,自行车和迎面而来的车辆。在SAE J3016中,“与驾驶汽车驾驶自动化系统有关的术语的分类学和定义”,汽车工程师协会(SAE)定义了几个级别的驾驶自动化(图1),描述了人驾驶员如何与车辆自动化水平相互作用。