混合材料在发动机设计中引起了人们的关注和兴趣。对于目前的一些发动机,风扇叶片的核心体由 3D 编织复合材料组成,而前缘则由钛制成。这些复杂复合翼型的制造通常涉及漫长的工艺过程,这些工艺过程是将树脂注入最初装有增强预制件的模具中(RTM 工艺 - 树脂传递模塑)。用于优化和控制工艺的相关成型工艺模拟通常与实际情况有很大不同,因为输入物质材料参数在空间和时间上都存在重大变化,而这些变化在模拟中没有考虑(或没有得到很好的考虑)。目前,空客和波音公司正在努力通过监控技术和RTM工艺的建模与仿真来提高复合材料制造工艺的稳健性和可靠性。因此,为了能够控制工艺并确保高质量的部件成型,制造系统(即注射工艺)应实时适应输入物质特性的变化条件,也适应工厂的任何变化甚至客户的需求。
- 在稳定模式下保持稳定的速度(静态扭矩在额定电机扭矩的 0.25 到 1.00 之间变化时,精度为 ±5 %); - 静态和动态力矩的补偿; - 在轧制和轧制设备的电力驱动装置中更换轧辊时,保持补偿器的填充度和工艺过程的连续性。 - 反转并限制轧辊紧急制动的时间(不超过轧辊周长的 ¼)。 电力驱动装置的设定参数的保持精度应确保在静态运行时,生产线最大运行速度的稳态偏差 – 在三相交流电源静态电压 +10%、-15%、频率 ±1%、环境温度 ±10 摄氏度 [1] 下,不超过标称运行速度的 ±1 %。
复合材料和混合材料在大型和结构部件中的应用和可信度已得到充分认可。推进应用包括风扇外壳和叶片。高性能合金盘正在考虑提高刚度和减轻重量,尽管成本是一个障碍。结构应用包括单元化主结构和切换到非热压罐工艺,这些工艺需要高水平的工艺内控制才能满足关键特性要求。制造过程缓慢,原材料和产品质量参差不齐;成本可能很高。人们对新型复合材料在工艺过程中和整个使用寿命中的性能了解甚少;由此产生的问题包括对工厂尺寸和特征的预测不佳,以及对整个使用寿命性能和冲击弹性的理解不完整。
许多工艺冷却应用所需的温度范围超出了冷却器允许的最小和最大工作值。下图显示了混合水管道布置变化的简单示例,该变化可以在满足此类冷却条件的同时实现冷却器可靠运行。例如,实验室负载需要 238 gpm (5 l/s) 的水以 86°F (30°C) 的温度进入工艺过程,并以 95°F (35°C) 的温度返回。冷却器的最大冷却水出口温度为 65°F (15.6°C),无法直接供应给负载。在所示的示例中,冷却器和工艺流速相等,但这不是必需的。例如,如果冷却器的流速更高,那么就会有更多的水绕过并与返回冷却器的温水混合。
•原子层处理(ALP)•生物医学应用的涂料和过程•用于能量转化和相关过程的涂层•通过人工智能,机器学习,模拟和数据科学进行数字化转换•电子光束过程•电子束工艺过程•电子束工艺•新兴和应用程序•高级材料•涂层•涂层•涂料•涂料•涂料•涂料•涂料•涂料•涂料•涂料•涂料•涂料,电子设备•等离子体处理和诊断•过程监控,控制和自动化•保护性,摩擦学和装饰涂层•量子计算•选择性原子量表过程•薄膜的薄膜贡献•氢经济贡献•薄膜传感器•薄膜•二维(2D)材料和异性范围的材料和异性范围和高级表现•展示•展示•展示•展示•网络范围•展示•网络范围•网络范围•展示•网络滚动•滚动•网络滚动•网络滚动•
在果树机械化栽培过程中,采摘是一个重要的最后阶段,这需要开发新型、便捷、不损坏果实的自动化技术设备,这些设备安装在能够自主采摘果实的机器人平台上,因此,开发用于在高达 5 米的高度以最小的损伤(或无损伤)采摘果园果实的自动化设备是一项紧迫的任务 [1,2]。现有的工业机器人模型不能直接应用于执行苹果的装载、卸载、分选和收获的工艺过程 [3,4]。特别是对于后者,需要开发特殊的执行器、捕获装置及其控制新算法,以便在田间采摘果园的水果 [5,6]。为了确定采摘装置的最佳设计参数,证实其控制系统的参数并将该技术成功引入生产过程,必须进行科学研究。配备了先进的自动抓取机械手的自行式机器人技术装置将能够在无需人工干预的情况下,在工业园林种植中实现高质量的果实采摘技术操作。
研究课题的相关性 当前,基于“互补金属氧化物半导体”(CMOS)技术的元件库由于其功能性强、速度快、能耗低等特点,在计算技术和控制系统的电子设备中占据主导地位。在现代 CMOS 微电路中,一个特征是闩锁效应或晶闸管效应 (TE),它在暴露于天然或人工来源的电离辐射时发生。由于制造具有 n 型和 p 型通道的紧密间距 MOSFET 的工艺过程的特殊性,在这些微电路中形成了寄生 pnpn 结构,在正常条件下不会影响产品的性能。当这种寄生pnpn结构受到外界影响而导通时,就会发生晶闸管效应,导致电流消耗不可逆增加,只能通过重置电源才能消除。除了故障之外,大电流的流动还可能导致灾难性的故障(CF)。 TE 的发生水平通常决定了 CMOS 微电路的抗辐射能力。
摘要:数字孪生是电力行业数字化转型的新兴技术之一。许多现有研究表明,数字孪生的广泛应用将推动行业迈向一个新的发展水平。本文广泛概述了数字孪生技术在解决现代电力系统问题的工业应用经验,特别关注高压电力设备生命周期管理任务。后一项任务勾勒出数字孪生在电力行业应用最有前景的领域之一,因为它需要深入分析工艺过程动态,并开发涵盖数字孪生技术所有潜在优势的物理、数学和计算机模型。目前,在评估和预测高压电力设备技术状态的问题上缺乏可靠的数据。在现代电力系统中使用数字孪生技术将允许聚合来自各种真实对象的数据,并通过实施人工智能方法实现大数据收集和处理的自动化,最终使管理电力设备的生命周期成为可能。本文仔细研究了数字孪生创建的工业经验,并考虑了最大的电气设备制造商提出的技术解决方案。考虑并讨论了数字孪生的分类、它们在电力行业应用的示例和主要特征,包括管理高压电气设备生命周期的问题。
摘要:如今,添加剂制造(AM)可以提供高价值的最终用途产品,而不是单个组件。这种进化需要整合多个工艺过程来实施多物质处理,更复杂的结构以及最终用户功能的实现。从这种高级AM技术中受益的一个重要产品类别是3D微电子。然而,整个制造程序的复杂性以及3D微电源产品的各种微观结构显着增强了由于制造缺陷而导致的产品故障的风险。为了应对这一挑战,这项工作介绍了基于深度学习和机器视觉的缺陷检测技术,以实时监视AM制造过程。我们提出了一种增强的Yolov8算法来训练能够识别和评估缺陷图像的缺陷检测模型。为了评估我们方法的可行性,我们将挤出3D打印过程作为应用程序对象,并为数据集量身定制,其中包括四个典型缺陷类别的总计3550张图像。测试结果表明,改进的Yolov8模型以每秒71.9帧的帧速率达到了令人印象深刻的平均平均精度(MAP50)为91.7%。
前言 1 标准化 1.1 简介 1.2 标准化发展简史 1.3 标准化的基本概念 1.4 作为规范性文件的技术规范 1.5 组织标准 1.6 标准化和技术法规文件信息 1.7 标准化的制定和批准程序国家标准 1.8 违反国家强制性要求标准和认证规则的责任 1.9 制定确保产品质量的措施1.10 标准化机构和服务体系 1.11 国家标准化体系 1.12 产品和服务确认体系的特点 1.13 国际和地区标准化 1.14 标准的实施。标准标记。产品标签 1.15 CIS 标准化 2 认证 2.1 产品认证。认证概念 2.2 认证方案 2.3 制定确保产品质量的措施 2.4 认证机构和检测实验室(中心)的认可 2.5 技术法规制定中强制符合性确认形式和方案的选择 2.6 国际认证 2.7 参与者3 计量学 3.1 计量学的本质和目的。计量及其组成部分 3.2 测试期间的测量。在工艺过程和生产管理中确保测量有效性的条件 3.3 测量和物理量 3.4 物理量 3.5 物理量单位制 3.6 标准和标准样品 3.7 测量尺度