虽然激光可能是微加工系统的核心,但成功的加工过程依赖于机器各个方面的协调配合。需要精心挑选的光学元件和光机械元件来将光束传送到工件上。高精度、顶级的运动控制系统和平台必须与机器视觉协同工作,以精确、可重复地移动工件。此外,集成的机械臂、管式装载机和传送带必须自主工作(或与操作员协同工作),以安全地处理零件,支持大批量生产。
摘要:纳米晶钙碳酸钙(CACO 3)和无定形可CACO 3(ACC)是越来越多的技术兴趣的材料。如今,它们主要是由稳定剂存在的Caco 3试剂湿反应产生的。 但是,最近发现可以通过计算机来产生ACC。 方解石和/或arogonite是由ACC前体形成的软体壳的矿物相。 在这里,我们调查了以潜在的工业规模转换的可能性,即从废物软体动物贝壳中转换为纳米晶体Caco 3和ACC的生物性可可3(BCC)。 使用了水产养殖物种的废物贝壳,即使用牡蛎(Crassostrea gigas,低毫克方解石),扇贝(Pecten jacobaeus,Medive-mg方解石)和蛤(Chamelea Gallina,Aragonite)。 通过使用不同的分散溶剂和潜在的ACC稳定剂来进行球铣削过程。 使用了结构,形态和光谱表征技术。 结果表明,机械化学过程产生了晶体域大小和ACC结构域的形成的降低,而ACC域的形成是在微覆盖骨料中共存的。 有趣的是,BCC的行为与地球CACO 3(GCC)的行为不同,在较长的铣削时间(24小时)时,ACC重新延伸为结晶阶段。 在机械化学处理的BCC的各种环境中的衰老产生了方解石和aragonite的混合物,以特异性的质量比,而GCC的ACC仅转化为方解石。 ■简介如今,它们主要是由稳定剂存在的Caco 3试剂湿反应产生的。但是,最近发现可以通过计算机来产生ACC。方解石和/或arogonite是由ACC前体形成的软体壳的矿物相。在这里,我们调查了以潜在的工业规模转换的可能性,即从废物软体动物贝壳中转换为纳米晶体Caco 3和ACC的生物性可可3(BCC)。使用了水产养殖物种的废物贝壳,即使用牡蛎(Crassostrea gigas,低毫克方解石),扇贝(Pecten jacobaeus,Medive-mg方解石)和蛤(Chamelea Gallina,Aragonite)。通过使用不同的分散溶剂和潜在的ACC稳定剂来进行球铣削过程。使用了结构,形态和光谱表征技术。结果表明,机械化学过程产生了晶体域大小和ACC结构域的形成的降低,而ACC域的形成是在微覆盖骨料中共存的。有趣的是,BCC的行为与地球CACO 3(GCC)的行为不同,在较长的铣削时间(24小时)时,ACC重新延伸为结晶阶段。在机械化学处理的BCC的各种环境中的衰老产生了方解石和aragonite的混合物,以特异性的质量比,而GCC的ACC仅转化为方解石。■简介总而言之,这项研究表明,BCC可以产生纳米晶CaCO 3和具有物种特异性特征的ACC复合材料或混合物。这些材料可以扩大从医学到材料科学的CACO 3的应用程序的广泛领域。
在温暖的气候中,这就是为什么位于日本群岛西南部的九州地区是许多Shochu生产地区的所在地。Kagoshima县的西半部位于Kyushu的最南端,曾经被称为“ Satsuma Province”,也因其甘薯的生产而闻名。(“ Satsuma”一词历史上与该地区及其农业遗产相关,尤其是Shochu生产中使用的地瓜或Satsumaimo。)用这些地瓜制成的she族称为“ satsuma shochu”。我们与Kagoshima县Makurazaki City的著名酿酒厂Satsuma Shuzo Company进行营销的Honbo Kazuhisa进行了交谈。“ satsuma shochu是指使用当地采购的地瓜和水的kagoshima县制造的shochu,米饭或米瓜小马铃薯。在2005年,它被世界贸易组织(WTO)视为地理指示(GI)3,并在国际上受到了区域品牌的保护。”在Satsuma shochu的生产中,地瓜的新鲜人在确定味道方面起着关键作用,这就是为什么Satsuma Shuzo的酿酒厂位于被红薯田所包围的区域中,从而使它们使用新鲜收获的红薯>Satsuma Shochu的传统生产过程如下:首先,蒸大米与Koji Mold的孢子混合,以创建Koji(称为“ Seigiku”的过程),大约需要两天。第一步的Koji然后组合了
傅里叶变换红外光谱(FTIR,Bruker VERTEX 70 + HYPERRION 2000),光学发射光谱(OES,经典的 Princeton Instruments Acton SpectraPro 2500i 和时间分辨的 Princeton Instruments Acton SP2750)。激光衍射喷雾测量(Malvern Spraytec),剥离试验(Tinius Olsen H1KT)高温摩擦仪 THT 石英晶体微天平带耗散监测(QCM-D)(QSense E1)液滴形状分析仪(水接触角)带温控室(KRUSS,DSA100)配备恒电位仪/恒电流仪(Metrohm Autolab)的光电化学电池、太阳模拟器和气相色谱仪用于(光)电化学和(光)(电)催化测量。纳米压痕仪 Bruker Hysitron TI 980(纳米机械和纳米摩擦学测试)。
材料建模一直是一个具有挑战性的问题。此类建模中出现了许多复杂性,例如非线性材料行为、复杂物理和大变形,以及多物理现象。此外,材料通常会表现出丰富的厚度响应行为,这阻碍了使用经典简化方法,并且在使用经典模拟技术时需要极其精细的网格。模型简化技术似乎是减少计算时间的合适解决方案。许多应用和材料成型过程都受益于模型简化技术提供的优势,包括固体变形、传热和流体流动。此外,数据驱动建模的最新发展为材料建模开辟了新的可能性。事实上,使用数据建模对模拟进行校正或更新导致了所谓的“数字孪生”模型的形成,从而通过数据驱动建模改进了模拟。通过使用机器学习算法,也可以对当前模型不准确的材料进行数据驱动建模。因此,在材料制造过程和材料建模框架内有效构建数字孪生的问题如今已成为一个越来越受关注的话题。数字孪生技术的最新进展是使用实验结果来校正模拟,同时也在无法通过实验定义基本事实时将其变化纳入正在运行的模拟中。本研究主题讨论了模型简化技术、数据驱动建模和数字孪生技术的最新发展,以及它们在材料建模和材料成型过程中的应用。在 Victor Champaney 等人的论文中,作者解决了非平凡插值的问题,例如,当曲线中的临界点(例如弹塑性转变点)移动位置时就会出现这种问题。为了找到该问题的有效解决方案,本文展示了几种方法,结合了模型简化技术和代理建模。此外,还展示了通过为预测曲线提供统计界限来量化和传播不确定性的替代品。本文展示了几种应用,以经典材料力学问题为例。
摩擦精加工技术是一种超精加工工艺,通过磨料的机械作用可以改善表面粗糙度。可以采用多种运动学,这些磨料在撞击处理过的表面时可以具有各种轨迹和速度(法向、斜向、切向等)。这项工作侧重于拖曳精加工工艺,特别是球形磨料垂直撞击铝部件(6061T6)表面的影响。它首先研究了使用润滑剂时初始表面粗糙度和球形介质直径的影响。其次,它分析了围绕磨料和表面的化学加速器的影响。设计了一个原始实验装置来观察各种表面粗糙度参数的演变并确定局部的物理和化学机制。结果表明,最终的表面精加工在很大程度上取决于磨料的尺寸,与润滑剂相比,化学添加剂可以加速材料去除率并改善粗糙度。
航空航天工业中的零件修复是增材制造技术的潜在应用。因此,可以减少运营损失并避免浪费昂贵的战略原材料。CRO2 提出了一种前工业化发展,以重建 Ti64 合金结构丢失的形状和功能,例如在空气排气管道中。激光金属沉积 (DED) 工艺用于制造 Ti64 零件。对几个样品进行了拉伸和疲劳测试,以表征 AM 材料。测试样品的机械性能与层压 Ti64 的机械性能相当,其微观结构是增材制造的典型特征。与焊接修复工艺相比,所提出的技术的可靠性已通过对薄代表性管道进行高温高压飞机环境鉴定测试成功证明。 (*) CRO 2:成本维修大修优化 (**) DED AM:定向能量沉积增材制造
《材料》(ISSN 1996-1944)于 2008 年创刊。该期刊涵盖 25 个综合主题:生物材料、能源材料、先进复合材料、先进材料特性、多孔材料、制造工艺和系统、先进纳米材料和纳米技术、智能材料、薄膜和界面、催化材料、碳材料、材料化学、材料物理、光学和光子学、腐蚀、建筑和建筑材料、材料模拟和设计、电子材料、先进和功能性陶瓷和玻璃、金属和合金、软物质、聚合物材料、量子材料、材料力学、绿色材料、通用材料。《材料》为投稿高质量文章和利用其庞大的读者群提供了独特的机会。
1 南非夸祖鲁·曼德拉医学院尼尔森R曼德拉医学院,南非德班,华盛顿大学全球卫生系5;美国西雅图,联邦政府大学农业科学研究所6,dos vales do jequitinhonha e Mucuri(UFVJM),UNA´ı,巴西。 和7生物科学研究所,联邦米纳斯·格拉斯大学(UFMG),巴西Belo Horizonte。南非夸祖鲁·曼德拉医学院尼尔森R曼德拉医学院,南非德班,华盛顿大学全球卫生系5;美国西雅图,联邦政府大学农业科学研究所6,dos vales do jequitinhonha e Mucuri(UFVJM),UNA´ı,巴西。 和7生物科学研究所,联邦米纳斯·格拉斯大学(UFMG),巴西Belo Horizonte。南非夸祖鲁·曼德拉医学院尼尔森R曼德拉医学院,南非德班,华盛顿大学全球卫生系5;美国西雅图,联邦政府大学农业科学研究所6,dos vales do jequitinhonha e Mucuri(UFVJM),UNA´ı,巴西。 和7生物科学研究所,联邦米纳斯·格拉斯大学(UFMG),巴西Belo Horizonte。南非夸祖鲁·曼德拉医学院尼尔森R曼德拉医学院,南非德班,华盛顿大学全球卫生系5;美国西雅图,联邦政府大学农业科学研究所6,dos vales do jequitinhonha e Mucuri(UFVJM),UNA´ı,巴西。 和7生物科学研究所,联邦米纳斯·格拉斯大学(UFMG),巴西Belo Horizonte。南非夸祖鲁·曼德拉医学院尼尔森R曼德拉医学院,南非德班,华盛顿大学全球卫生系5;美国西雅图,联邦政府大学农业科学研究所6,dos vales do jequitinhonha e Mucuri(UFVJM),UNA´ı,巴西。 和7生物科学研究所,联邦米纳斯·格拉斯大学(UFMG),巴西Belo Horizonte。南非夸祖鲁·曼德拉医学院尼尔森R曼德拉医学院,南非德班,华盛顿大学全球卫生系5;美国西雅图,联邦政府大学农业科学研究所6,dos vales do jequitinhonha e Mucuri(UFVJM),UNA´ı,巴西。 和7生物科学研究所,联邦米纳斯·格拉斯大学(UFMG),巴西Belo Horizonte。南非夸祖鲁·曼德拉医学院尼尔森R曼德拉医学院,南非德班,华盛顿大学全球卫生系5;美国西雅图,联邦政府大学农业科学研究所6,dos vales do jequitinhonha e Mucuri(UFVJM),UNA´ı,巴西。 和7生物科学研究所,联邦米纳斯·格拉斯大学(UFMG),巴西Belo Horizonte。南非夸祖鲁·曼德拉医学院尼尔森R曼德拉医学院,南非德班,华盛顿大学全球卫生系5;美国西雅图,联邦政府大学农业科学研究所6,dos vales do jequitinhonha e Mucuri(UFVJM),UNA´ı,巴西。和7生物科学研究所,联邦米纳斯·格拉斯大学(UFMG),巴西Belo Horizonte。