摘要 - 已经研究了使用光电仪和次级电子排放对相邻太空飞行器的无触觉感测,用于地球同步(GEO)应用。随着越来越多的任务发送到Cislunar空间,该技术也可以扩展到那里。但是,Cislunar环境的复杂性给无触摸潜在的传感技术带来了新的挑战。一个主要问题的时间比地理区域短,而在Cislunar地区可能低至10 m。因此,研究了一个在月球周围短德比区域中带电的航天器周围的电力和电势场的模型。呈现了真空(拉普拉斯)和debye -hückel模型,并使用有效的debye长度来扩展模型并更好地代表环境。先前已经在低地球轨道(LEO),安静的地理和小行星环境中研究了有效的Debye长度,但在Cislunar等离子体环境中尚未发现,并且在远距离距离的距离上可以使用电子排放率更高,比预期的距离更大。一旦建立了有效的DEBYE长度和相关模型,通过在NASCAP-2K中的计算(一种飞船 - 系数相互作用软件)中探索了有效的Debye长度和无触摸潜在传感功能之间的关系。然后使用所开发的方法来确定在具有不可忽略的静电势屏蔽的Cislunar地区被动和主动无触摸电势感应是可行的。
混合电子离子导体对于各种技术至关重要,包括在耐用,自我维持的,不受位置或环境1,2的不受限制的方式中从湿度中收获能力。已经提出了50年的混合导体3,4。最近,据称Geobacter Sulfurreducens Pili丝是发电5,6的纳米线。在这里,我们表明该功率是由G.硫核的生产的细胞色素OMCZ纳米线产生的,其电子电导率比Pili 7高20,000倍。非常明显的是,由于定向电荷通过无缝堆叠的Hemes和带电的氢键表面,纳米线显示了超高电子和质子迁移率(> 0.25 cm 2 /vs)。AC阻抗光谱和直流电导率测量,使用四个探针范德布尔和背门效率 - 效应 - 横向器设备表明,湿度会使载流子的迁移率提高30,000倍。冷却将激活能量减半,从而加速电荷传输。电化学测量结果确定将纯电子传导转换为发电的混合传导所需的电压和迁移率。高纵横比(1:1000)和亲水性纳米线表面可有效捕获水分以逆转降低氧气,从而产生巨大的电位(> 0.5 V),以维持高功率。我们的研究建立了一类新的生物合成,低成本和高性能的混合导管,并确定了使用高度可调的电子和蛋白质结构来提高功率输出的关键设计原理。
概述问题1描述了PHO信号通路,该途径调节酵母中的磷酸盐稳态。问题刺激提出了一个简化的信号转导途径的模型和一个来自旨在研究Pho81和Pho4(两个蛋白质pho Pho途径)的作用的实验的数据表。在(a)部分中,学生应描述将带电的磷酸组添加到蛋白质中的效果(技能1.a;学习目标[lo] syi-1.c从AP生物学课程和考试描述[CED])。还期望学生解释如何在信号转导途径中放大信号(技能1.c; lo ist-3.d)。在(b)部分中被期望通过识别因变量来证明对实验设计的理解,从而证明研究人员使用野生型酵母菌菌株作为产生突变菌株的背景,证明使用突变菌株的使用是合理的,这些突变菌株都包含一个对Pho Pathway的单个成分的突变(技能3.C)(技能3.C)。(c)部分中,学生可以通过识别导致最高相对量的PHO1 mRNA(技能4.B)来描述表中的数据。然后,要求学生计算暴露于高细胞外磷酸盐(高PI)环境的野生型细胞中APASE活性的百分比变化,而暴露于低PI环境的环境(技能5.A)。在(d)部分中,学生有望预测一个后续实验的结果,该实验测试了功能突变对PHO85的影响,Pho85是PHO途径中的另一种蛋白质(Skill 3.B; LO IST-3.G)。学生被期望证明他们的预测是合理的(技能6.C)。
和药物输送。23,24在这里我们建立了这些设计概念,并开发了针对PSMA的TMV,以增强药物递送焦油焦油前列腺癌。特定的cally,我们使用了TMV的T158K突变体,25,它在外表面上呈现2130个反应性赖氨酸残基,而内部通道内衬有4260个谷氨酸残基。这允许将外部赖氨酸残基的主要胺用于N-羟氧化二酰亚胺(NHS)介导的生物结合,而内部谷氨酸的羧酸酯基团可以通过1-乙基-3--(3-二氨基甲基氨基氨基氨基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基酸)来解决带电的腔体,用于构成带正电的分子货物的凹入。Using a two-step bio- conjugation protocol (installation of an azide by conjugation of an NHS reactive linker to the surface lysines, followed by conjugation of an alkyne-terminated targeting ligand using copper-free click chemistry), we conjugated and displayed ((( S )- 5-amino-1-carboxypentyl)carbamoyl)- L -glutamic acid (DUPA),一种与PSMA结合的小靶向配体。26用近红外urophore cy5共价标记TMV通道,以启用纳米颗粒的成像和跟踪,或用抗肿瘤剂Mitoxantrone(MTO)(一种II型拓扑酶酶抑制剂)加载。27我们使用PSMA +和PSMA前列腺癌细胞在体外测试了焦油的特定城市和药物递送的效率。
对质子的深层非弹性散射提供了第一个证据,表明哈德子不是基本的,而是由夸克组成[1,2]。这是确定质子内部分布函数(PDF)的必不可少的工具,在质子内进行横截面预先分解所需的。但是,带电的瘦素相互作用,仅探测被充电的夸克的密度。必须推断出中性胶子的密度,这可以通过研究夸克PDF如何以由交换的虚拟光子质量设定的比例来发展来完成。这些PDF以拟合[3-5]的拟合确定,包括尤其是E±P散射[6,7],在PP碰撞中,向量玻色子[8-11]和重型Quarks [12-15]的正向产生[12-15]。由于缺乏低x的数据,Parton携带的强子动量的比例,归因于Gluon PDF的不确定性在低x时很大,甚至与X的gluon密度兼容,甚至与x [16]兼容。因此需要其他方法才能访问Gluonic PDF。PP碰撞中的中央独家媒介产生(CEP)是单个介子的准弹性生产,使质子完好无损。独家志生产的产生是由一个接近其质量壳的虚拟光子转换为CC对,后者将其放到J /ψ或ψ(2 s)介子中。这些过程在魅力夸克质量的尺度上探测了gluonic pdf。该过程的排他性要求,在领先顺序上,目标强子可以改变两个胶子。1。因此,横截面大约缩放为Gluon密度平方[17-20]。过程和主要背景如图
和药物输送。23,24在这里我们建立了这些设计概念,并开发了针对PSMA的TMV,以增强药物递送焦油焦油前列腺癌。特定的cally,我们使用了TMV的T158K突变体,25,它在外表面上呈现2130个反应性赖氨酸残基,而内部通道内衬有4260个谷氨酸残基。这允许将外部赖氨酸残基的主要胺用于N-羟氧化二酰亚胺(NHS)介导的生物结合,而内部谷氨酸的羧酸酯基团可以通过1-乙基-3--(3-二氨基甲基氨基氨基氨基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基酸)来解决带电的腔体,用于构成带正电的分子货物的凹入。Using a two-step bio- conjugation protocol (installation of an azide by conjugation of an NHS reactive linker to the surface lysines, followed by conjugation of an alkyne-terminated targeting ligand using copper-free click chemistry), we conjugated and displayed ((( S )- 5-amino-1-carboxypentyl)carbamoyl)- L -glutamic acid (DUPA),一种与PSMA结合的小靶向配体。26用近红外urophore cy5共价标记TMV通道,以启用纳米颗粒的成像和跟踪,或用抗肿瘤剂Mitoxantrone(MTO)(一种II型拓扑酶酶抑制剂)加载。27我们使用PSMA +和PSMA前列腺癌细胞在体外测试了焦油的特定城市和药物递送的效率。
太阳在爆炸性太阳活动中释放了大量能量,例如太阳耀斑和冠状质量弹出(Webb和Howard,2012; Aschwanden等,2017; Benz,2017)。太阳能电晕可以加热到数百万度,大量带电的颗粒几乎可以加速到光速(Desai和Giacalone,2016年; Reames,2017)。加热的等离子体和高能量颗粒会在整个电磁频谱中增加太阳辐射,从无线电到伽马射线波长,这可能会在大约8分钟后立即对地球上层大气产生深远的影响。这些在地球上层大气中产生了额外的电离和加热,导致无线电停电,GNSS信号干扰和跟踪损失,航天器上的阻力增加,影响全球电路(GEC)以及许多其他现象(Botermer和Daglis,2007年; Buzulukova和buzulukova; Buzulukova and tsurutani; buzulukova and tsurutani; tsurutani; tasurutani; tacz22222;最近的研究表明,太阳耀斑效应可以通过电动力耦合扩展到地球的磁层(Liu等,2021; Liu等,2024)。当高能颗粒通过星际介质传播并到达地球附近(称为太阳能粒子(SEP)事件)时,它们可以对太空中的宇航员和航天器电子构成危险的辐射威胁(Vainio等人(Vainio等人,2009年,2009年; Shea and Smart,2012年)。该研究主题旨在在太阳及其地理上的后果上收集有关高能过程的科学贡献。本电子书中包含了八篇研究文章和一项综述,重点是太阳耀斑的多波长观察,加速度和能量颗粒的运输以及太阳喷发对耦合的磁层 - 离子层 - 热层 - 热层系统的影响。
LHCB检测器的升级II(预见到2031年)将以1.5×10 34 cm -2 s -1的瞬时发光度运行,以超过300 fb -1的样本积累。每次事件应对42和200带电的粒子轨道的估计堆积,将添加精确的时机,并将其添加到跟踪和导向子系系统中。一个新的顶点定位器(VELO),能够管理预期的7.5倍的数据速率,占用率和辐射量。基于4D混合硅像素技术,具有提高的ASIC速率和时序功能,新的Velo将允许精确的美容和魅力强体标识和实时模式识别。通过详细的模拟,探索了通过详细的模拟,探索通知,内部半径,材料预算和像素尺寸相位空间,同时将冲击参数(IP)分辨率限制为升级I值。在6×10 16 N EQ /cm 2和8×10 15 N EQ /cm 2时的内部半径和寿命末端的两种不同的场景作为进一步优化的起点。对传感器技术(包括LGADS,3DS和Planar Pixels)的进步和当前的研发,重点介绍了辐射硬设计和缺陷工程。与传感器电容和功率预算有关的相关要求是为了实现未来28 nm Protipe提交的每个命中计时目标的30 ps。相对于每个布局方案,研究了冷却,力学和真空实现的改进。将双重Krypton冷却的使用评估为以上1.5 w/cm 2功率耗散的情况。还考虑了可更换的传感器模块,并与3D打印的钛载体相结合。最后,讨论了在六年内进行最终设计优化的全面研发计划。
在颗粒和准颗粒的现象学水平上,超导体(伦敦,金兹伯格 - 兰道,bcs和其他理论)中的超潮流产生机制有不同的方法。在基本场上理论层面上,我们将超流动性的本质归因于包含电磁场的计量量的物理学。在经典的力学和电动力学中,该规格电位是一个主要实体,因为它没有由其他数量定义。但是,在量子力学的框架中,我们可以定义由复杂标量场定义的量子规势。量子规势可以被视为电磁场基底态的局部拓扑非平凡的激发,其特征在于指数等于磁通量的整数数量。从普通和量子计势中产生了量规不变的有效向量电势,可以像电场和磁场一样观察到。这导致了Maxwell方程的修改:尺寸长度的常数和电磁相互作用的定位。所有这些情况都赋予了识别Supercurrent的有效向量潜力的方法。我们还考虑了电磁场的新形式与Dirac Spinor场此处介绍的物质的相互作用。这种带电的费米 - 摩擦形式的特征是两个参数。从现象观点的角度来看,这些参数源自电子电荷和质量,但总的来说,它们应由系统本身定义。当然,电磁相互作用在扩展电动力学中的定位是保守的。仅当电磁场仅由带有磁通量的Quange势势呈现电磁场时。电磁相互作用的定位可以视为量子物理效应和超导性的主要物理原因。我们相信,这将有助于阐明基础野外理论方法框架中所谓的高温超导性。在任何情况下,对电磁场的新形式的实验观察(“超导光”)是第一个需要的步骤。
在这项研究中,采用了创新的电氧化技术来创建基于石墨烯的前向渗透(FO)膜。这涉及在可伸缩的平板底物上构建聚乙二胺还原氧化石墨烯(PEI:RGO)层,该层用聚乙烯甘油 - 甘油 - 氧化物(3,4-乙烯 - 二羟基苯乙烯)官能化,可通过电苯甲酸酯(P:P:p:p:p:p:p:p:p:p:p)(p:p:p:p:p:p:p:p:p:p:p:p)。在10 V的优化电势下,我们成功地将PEI:RGO层压与P:P:P:P支持层相结合,导致高度多孔结构。与单面PEI:RGO膜(SS-PEI:RGO)相比,双面涂层PEI:RGO膜(DS-PEI:RGO)表现出色。ds-PEI:RGO显示出比SS-PEI:RGO(90.1%)的离子盐排斥更高(95%),但略低于实验室大规模的质量质量质量降低过程。有趣的是,与SS-PEI:RGO和CTA-FO膜(分别为0.017 g/L和2.549 g/L)相比,所得的DS-PEI:RGO膜表现出降低的特异性盐通量(0.014 g/L)。使用与藻酸钠的合成海水评估了PEI:RGO膜的防染色特性。在3.0 V DC电位下,与没有电场的膜相比,PEI:RGO膜的恢复通量增加了30%。这种改进归因于PEI:RGO和相对带电的离子之间的电氧化机制,以及PEI:RGO和P:P:P:P链形成的独特纳米复合结构,有助于增强的膜完整性。