(2)一个带电的圆柱导体,(3)无限的电荷片和两个平行的充电板,电容器,静电场能,电场中导体表面的每单位部位的力,在电场中指导球,以均匀的电场。介电常数,极性和非极性电介质,电介质和高斯定律,介电极化,电动极化矢量P,电位移矢量D.三个电载体,介电敏感性和介电常数和介电常数,二线易感性和极化机制,lorentz local fielt,lorentz lorentz locection和claius fieltriric等方程电介质,稳定电流,电流密度J,非稳态电流和连续性方程,LR,CR和LCR电路中电流的上升和衰减,衰减常数,交流电路,复数及其在解决交流电路问题中的应用,复杂的启发和反应性,串联和平行共振,Q因子,Q因子,Q因子,Q因素,Q因子,AC Coutfer a Ac Coutive a Ac Coutival a ac Coutive aC Ac Coutival aC AC Cower a ac Coution,AC Coution,AC Cower town aC,电动因子,电动因子,发电机,发电机,发电机,发电机,电动因子。
尘埃晶粒,通过与电子,离子和电场的相互作用获得的电荷促进了集体行为。对于许多应用,从纳米颗粒的产生[1,2]到污染控制[3,4],充电的尘埃颗粒最终使活跃的等离子体环境留下了随后的处理。因此,带电的灰尘晶粒经历了从活性等离子体区域的过渡,通过富含离子的等离子体余泽,并带有净正空气电荷,进入含有中性气体和长期自由基的平衡环境。早期观察[5-7]在低压下腐烂的等离子体中的尘埃[5-7]触发了对时间和空间余气等离子体中灰尘(DE)的调查[8-18]。相比之下,与低压的尘土飞扬的等离子体余滴相比,纳米颗粒与大气压力余潮等离子的相互作用构成了相对未开发的领域。Nevertheless, the synthesis of nanocrystals at atmospheric pressure provides a low cost method to produce and deposit nanoparticles [ 19 – 22 ] with a speci fi c structure [ 23 , 24 ] and optical properties [ 25 , 26 ], while the deposition of thin fi lms using atmospheric pressure plasmas represents a cost effective alternative to vacuum processes [ 27 – 30 ] and provides the potential to include nanoparticles [ 20 ].随着这些
酶工程是增强生物催化性能并优化基于蛋白质的材料的强大方法。本研究采用祖先序列重建(ASR),合理设计和过程条件优化,以提高酶稳定性,催化效率和功能特性。探索了四个关键领域:用于手性胺合成,酶促酰胺键的形成,Baeyer-Villiger氧化选择性控制和基于蛋白质的含水材料的跨激酶工程。 为了增强来自硅杆菌pomeroyi(SP -ATA)的ω-转氨酸酶的热稳定性和底物范围,使用ASR来识别稳定突变,从而提高其工业适合性。 为酰胺键的形成,有理设计优化了铜绿假单胞菌N-酰基转移酶(PA AT),并与氯瓜羧酸还原酶还原酶(CAR SR -A)的蛋白质rugosus rugosus rugosus rugosus rugosus rugosus rugosus rugosus rugosus的腺苷酸化结构域相结合。 工程的Y72S/F206N变体显着提高了与药物相关的羧酸的转化率,为化学合成提供了可持续的替代品。 在Baeyer-Villiger氧化中,研究了过程优化以控制区域选择性。 从杆菌和节肢动物物种中工程的Baeyer-Villiger单加氧酶(BVMO)通过增加氧气的可用性,将产品分布转移到了“正常”的内酯。 用于基于蛋白质的吸水材料,patatin诱变改变了带电的氨基酸组成。探索了四个关键领域:用于手性胺合成,酶促酰胺键的形成,Baeyer-Villiger氧化选择性控制和基于蛋白质的含水材料的跨激酶工程。为了增强来自硅杆菌pomeroyi(SP -ATA)的ω-转氨酸酶的热稳定性和底物范围,使用ASR来识别稳定突变,从而提高其工业适合性。为酰胺键的形成,有理设计优化了铜绿假单胞菌N-酰基转移酶(PA AT),并与氯瓜羧酸还原酶还原酶(CAR SR -A)的蛋白质rugosus rugosus rugosus rugosus rugosus rugosus rugosus rugosus rugosus的腺苷酸化结构域相结合。工程的Y72S/F206N变体显着提高了与药物相关的羧酸的转化率,为化学合成提供了可持续的替代品。在Baeyer-Villiger氧化中,研究了过程优化以控制区域选择性。从杆菌和节肢动物物种中工程的Baeyer-Villiger单加氧酶(BVMO)通过增加氧气的可用性,将产品分布转移到了“正常”的内酯。用于基于蛋白质的吸水材料,patatin诱变改变了带电的氨基酸组成。如分子动力学模拟所证明的那样,富含LYS和ASP的变体增加了吸收吸水,这证明了酶工程在可持续吸收材料开发中的潜力。这项研究整合了计算和实验酶工程策略,以改善化学合成和功能性生物材料的生物催化,为工业生物技术和可持续材料科学提供新颖的解决方案。
通过卫星激发的电磁波和通过轨道驱动的波(Soimow)的测量值(SOIMOW)的测量来检测到一种称为空间对象识别的技术。具有等离子波的空间对象的接近度测量可能允许在传统上通过光学望远镜和雷达范围传感器实现的正常检测阈值以下的空间碎片。soimow使用原位等离子体接收器来识别轨道结合过程中的空间对象。卫星和其他空间对象穿过200到1000公里的高度之间的近地层,由电子收集和阳光下的照片发射引起电荷。这些超音速,带电的物体激发了各种血浆波。SOIMOW技术表明,可以观察到来自已知物体的电磁等离子体波到数十公里的范围,从而提供有关存在空间对象的信息。Soimow概念已用蜂群卫星上的无线电接收器仪器(RRI)证明。RRI数据的幅度,光谱和极化变化与电磁,压缩alfvén波的一致,这些电磁波是由跨磁场线传播的带电空间对象发射的。此外,可以通过较低的杂化漂移或离子声波不稳定性产生空间对象处的静电波。正在研究原位电场探头和对散射卫星波的远程检测,以确定轨道物体的位置。
摘要:基因治疗涉及将外源遗传物质引入宿主组织中,以修饰基因表达或细胞特性以进行治疗。最初开发的是为了解决遗传疾病,基因疗法已扩展到涵盖了广泛的疾病,尤其是癌症。有效地将核酸递送到靶细胞中取决于载体,与病毒载体相比,非病毒系统由于其安全性的增强而变得突出。壳聚糖是一种生物聚合物,经常用于为各种生物医学应用,尤其是核酸递送的纳米颗粒制造纳米颗粒,最近强调靶向癌细胞。壳聚糖的带电的氨基基团可以与核酸形成稳定的纳米复膜,并促进与细胞膜的相互作用,从而促进细胞摄取。尽管有这些优点,但基于壳聚糖的纳米颗粒面临诸如生理pH值差的溶解度,癌细胞的非特异性溶解度以及效率低下的内体逃逸,从而限制了其转染效率。为了解决这些局限性,研究人员专注于增强壳聚糖纳米颗粒的功能。策略包括提高稳定性,提高靶向特异性,促进细胞摄取效率以及促进内体逃逸。本综述对这些类别中的最新表述方法进行了批判性评估,旨在提供有关推进基于壳聚糖的基因递送系统的见解,以提高疗效,尤其是在癌症治疗方面。
本研究介绍了 2019 年冠状病毒病 (Covid-19) 候选疫苗 Biovacc-19 的背景、原理和作用方法,该疫苗目前处于临床前开发的后期阶段,已通过首次急性毒性测试。与传统开发的疫苗不同,Biovacc-19 的作用方法是利用 21.6% 的严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 刺突蛋白成分中的非人类样 (NHL) 表位,该表位显示出明显的分布式电荷,包括带电的弗林样裂解位点的存在。解释了疫苗设计的逻辑,首先是对 SARS-CoV-2 病因的实证分析。对 SARS-CoV-2 病因的错误假设可能会导致疫苗无效或有害,包括抗体依赖性增强的风险。疫苗设计中的此类问题从人类免疫缺陷病毒领域的过去经验中得到了说明。我们提出,这种嵌合病毒刺突的双重作用一般作用方式(包括受体结合域)包括血管紧张素转换酶 2 受体以外的膜成分,这解释了其传染性和致病性的临床证据。我们表明,非受体依赖性吞噬一般作用方式与 SARS-CoV-2 刺突表面插入物(通过盐桥形成有效结合)产生的累积电荷特别相关;并且通过刺突的爆破,我们展示了 Biovacc-19 被下调的 NHL 表位。
固态等离子体Wakefield加速度最近引起了人们的关注,作为在1台电视/m或以下[1,2]下达到前所未有的超高加速度梯度的可行替代方案。在这种情况下,纳米制造技术的最新进展[3]开辟了具有具有不均匀性能的结构化等离子体的可能性。例如,碳纳米管(CNT)束和多层石墨烯的利用[4]具有产生稳定的等离子体的巨大潜力,其电子密度达到10^24 cm^-3,即比常规气体血浆高的数量级。作为新的合作努力的一部分,称为NanoACC(纳米结构在加速器物理学中的应用),我们进行了粒子中的粒子(PIC)模拟,以研究利用CNT阵列的激光驱动和光束驱动的预电目标激发。我们的结果证实了在电视/m量表上获得韦克菲尔德的成就。此外,我们已经观察到现象,例如自注射,次秒束形成以及微米尺度靶标内电子的加速,导致动力学能量约为10 meV。这些发现为操纵带电的粒子梁的有希望的可能性开辟了可能性,从而塑造了紧凑的加速器设计和辐射源的未来。此外,通过有效控制目标结构,固态等离子体在提取相关的束参数方面具有高度的可调性。在本文中,我们介绍了纳米ACC合作进行的研究概述,并讨论未来的实验计划以及潜在的应用。
Infrastructure: The “Charging Infrastructure for Electric Vehicles – Guidelines and Standards” were issued by the Ministry of Power on 14.01.2018 which were subsequently revised on 01.10.2019, 08.06.2020, 14.01.2022, 07.11.2022 and 27.04.2023.在仔细考虑了从各种利益相关者那里得到的进展和建议后,已决定发布修订后的合并准则,以加速该国的e-Esibility过渡,从而取代了这方面所有上述上述上述准则。修订后的关于EV充电基础设施的安装和操作的合并准则应如下所述,应从其发行之日起生效。1。简短标题:这些准则应称为“电动汽车充电基础设施的安装和操作指南-2024”。2。适用性:这些准则的规定应适用于安装在私人拥有的停车位中的EV充电基础设施的所有者/操作员高速公路,高速公路等3。目标:a)通过确保安全,可靠且可访问的,充电基础设施和生态系统来更快地采用电动汽车。b)提供合理性的服务费用,由充电站的所有者/运营商收取。c)主动支持EV充电基础架构的创建。d)促进电气分配系统的准备,以采用电动电动机充电基础设施。4。定义:a)电池充电站(BCS)是指电动汽车的电池电池的电池电池被电气充电。b)电池交换站(BSS)是指任何电动汽车都可以获取其电池或部分充电的电池的地方,被带电的电池代替。
在过去的半个世纪中,计算机存储和程序信息的逻辑设备每2年缩小了2倍。量子计算机是小型计算机的终点,当设备变得足够小时,其行为受量子力学的控制。召开数字计算机中的信息存储在电容器上。一个未充电的电容器寄存器A 0和一个带电的电容器寄存器a 1.存储在单个旋转,光子或原子上。本身可以将一个原子视为一个很小的capitor。一个处于其基态的原子对未充电的电容器是肛门的,并且可以进行注册为0,而以激发状态的原子类似于收费的Ca-pacitor,可以将其登记为1。到目前为止,量子计算机听起来很像古典计算机;量子力学的唯一用途是在离散的旋转,光子或原子的离散状态与数字计算机的离散逻辑状态之间建立对应关系。量子系统表现出没有经典类似物的行为。特别是与经典系统不同,量子系统可以存在于不同离散状态的叠加中。普通的电容 - 可以被充电或无需充电,但不能同时使用:经典位是0或1。相比之下,其地面和激发态的量子超孔中的原子是一个量子位,从某种意义上说,它同时将0和1寄存。因此,量子计算机可以做策略计算机无法做到的事情。经典计算机通过使用诸如晶体管等非线性设备来解决问题,以在
现场可编程栅极阵列(FPGA)由于有能力,低价和高性能等优势,因此受到了各种领域的研究人员的广泛关注。商业FPGA越来越多地用于卫星和其他航天器中。然而,航空航天环境带来了严重的挑战,这是由于带电的颗粒可以轻松在基于SRAM的FPGA的资源中引起单事件效应(参见),例如可配置的逻辑块(CLBS)和块状-RAMS(BRAMS)[1]。因此,在将FPGA的敏感性应用于航空航天工程时,有必要评估它们的敏感性。考虑到单事件不适(SEU)是最常见的现象,因此对FPGA的SEU评估对于采用有针对性的方法来加强设备至关重要。随着技术的缩放,FPGA的特征大小降低到28 nm甚至更小,FPGA中每瓦的资源和性能量得到了极大的改善。seu发生时,当粒子弹动一个单个存储单元时,当粒子在同一帧中的几个位时,在FPGA中发生了多位upsess(MBU)。特征大小的降低的影响很复杂:降低特征大小会导致细胞之间的距离降低。然后粒子可以影响几个细胞,因此,MBU在FPGA上的概率变得更高。此外,还降低了导致浮动的LET阈值,这会导致SEU敏感性增加,这是由于特征尺寸的降低而增加[2]。已经对FPGA进行了大量研究,其特征大小为28 nm甚至更小。最近的工作[3]描述了不同的