摘要:紫外光电探测器(UVPD)在军事和民用应用中发挥着重要作用,通常采用宽带隙半导体(WBS)作为构造模块来制造。遗憾的是,基于 WBS 的 UVPD 商业化往往受到其相对较高的制造成本的限制,因为需要使用非常复杂的生长仪器。在本文中,我们提出了一种基于具有相对较小带隙的非 WBS 硫化铅(PbS)的灵敏 UVPD。器件分析表明,由 48.5 nm PbS 纳米薄膜制成的 UVPD 对 365 nm 的紫外线照射高度敏感。具体而言,在 365 nm 照射下的响应度和特定探测率分别为 22.25 AW − 1 和 4.97 × 10 12 Jones,与大多数传统的基于 WBS 的 UVPD 相当或更好。基于 PbS 纳米薄膜的 UVPD 还表现出优异的环境稳定性。实验结果和基于技术计算机辅助设计软件的模拟证实,PbS 纳米薄膜的异常特性与相对较薄的厚度和波长相关的吸收系数有关。这些结果为窄带隙半导体在未来光电设备和系统中实现低成本敏感 UVPD 提供了机会。关键词:紫外光电探测器、窄带隙半导体、PbS、高响应度、技术计算机辅助设计 ■ 介绍
本报告是由美国政府某个机构资助的工作报告。美国政府、其任何机构及其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,或承担任何法律责任或义务,亦不保证其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定的商业产品、流程或服务,并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或偏爱。本文表达的作者的观点和意见不一定表明或反映美国政府或其任何机构的观点和意见。
本文提出了一种基于开关电容的CMOS带隙基准源。利用开关电容,可以将两个一阶补偿基准电压组合起来,从而实现具有较低温度系数的新型基准电压。所提出的设计电路采用0.18μm CMOS工艺实现。在-40℃至120℃范围内,1.8V电源电压下基准输出电压的TC为14.5ppm/℃。所提出的基准电压为0.235V,开关电容操作引起的纹波电压为700μV。结果表明,本文描述的带隙基准源实现了比其他工作更好的TC,适用于
Linh 等人 35 发现用离子半径较大的碱金属(M = Li、Na 和 K)取代(Bi 0.5 M 0.5 )TiO 3 会增加其直接带隙。将 MCaF 3(M = K、Cs)中的 K 位取代为 Cs 位,可将带隙从间接变为直接,从而改善光学特性。36 Gillani 等人还报道将碱土金属(Mg、Ca、Ba)掺杂到 SrZrO 3 中可使带隙从间接变为直接。37,38 此外,利用静水压力将带隙从间接变为直接被证明是有益的,就像在许多立方钙钛矿中所看到的那样。 39 – 44 通过施加外部压力,卤化物立方钙钛矿 CsBX 3 (B ¼ Sn, Ge; X ¼ Cl, Br) 的带隙减小到零,从而导致半导体到金属的转变。45 – 49 在静水压力下,还对 Ca 基立方碱金属卤化物钙钛矿 KCaX 3 (X ¼ F, Cl) 50,51 和 ACaF 3 (A ¼ Rb, Cs) 进行了第一性原理研究。52,53
宽带隙半导体 SiC 和 GaN 已经作为功率器件商业化,用于汽车、无线和工业电源市场,但它们在太空和航空电子应用中的应用受到重离子暴露后易发生永久性性能退化和灾难性故障的阻碍。这些宽带隙功率器件的太空认证工作表明,它们易受无法屏蔽的高能重离子空间辐射环境(银河宇宙射线)的损坏。在太空模拟条件下,GaN 和 SiC 晶体管在其额定电压的约 50% 下表现出故障敏感性。同样,在重离子单粒子效应测试条件下,SiC 晶体管容易受到辐射损伤引起的性能退化或故障,从而降低了它们在太空银河宇宙射线环境中的实用性。在 SiC 基肖特基二极管中,在额定工作电压的 ∼ 40% 时观察到灾难性的单粒子烧毁 (SEB) 和其他单粒子效应 (SEE),并且在额定工作电压的 ∼ 20% 时漏电流出现不可接受的下降。超宽带隙半导体 Ga 2 O 3 、金刚石和 BN 也因其在电力电子和日盲紫外探测器中的高功率和高工作温度能力而受到探索。从平均键强度来看,Ga 2 O 3 似乎比 GaN 和 SiC 更能抵抗位移损伤。金刚石是一种高度抗辐射的材料,被认为是辐射探测的理想材料,特别是在高能物理应用中。金刚石对辐射暴露的响应在很大程度上取决于生长的性质(自然生长与化学气相沉积),但总体而言,金刚石对高达几 MGy 的光子和电子、高达 10 15(中子和高能质子)cm − 2 和 > 10 15 介子cm − 2 的辐射具有抗辐射能力。BN 对高质子和中子剂量也具有抗辐射能力,但由于中子诱导损伤,h-BN 会从 sp 2 杂化转变为 sp 3 杂化,并形成 c-BN。宽带隙和超宽带隙半导体对辐射的响应,尤其是单粒子效应,还需要更多的基础研究。© 2021 电化学学会(“ ECS ” )。由 IOP Publishing Limited 代表 ECS 出版。[DOI:10.1149/2162-8777/ abfc23 ]
“ ctusbdu(bmmjvn ojusjef ijhi fmfduspo npcjmjuz usbotjtupst(b/)&。5t bsf bu b qpjou pg sbqje pg sbqje hspxui hspxui hspxui hspxui i uif tuboebse(b/ ifufsptuvsft sfnbjo vopqujnj [fe gps nbyjnvn qfsgpsnbodf'ps uijt sfbtpo xf qspqptf qspqptf uif tijgu/ mbujops qspwf uif pvuqvu qpxfs boe uifsnbm nbobhfnfu pg *** ojusjefbnqmjàfst#fzpoe jnqspwmfonphu jmm jmm jmm bmmpx bmmpx bmmpx Ojdt 4ubuf pg uif dvssfou q diboofm'&5tnbuvsfàmufsjfdjpmwjbohmmz xjui ufhsbufe xjui xjui xjui bo“ m/(b/)& usjef fmfduspojdt nbz nbyjnj [f uifjhis qpfndpwmm ijhi nnvojdbujpo boe ijhi ijhi qpxfs mphjd bqqmjdbujpot
带隙基准源是模拟、数字或混合信号电路的关键元件,例如模数转换器、数模转换器、低压差稳压器、锁相环和许多其他电子设备[1、2、3、4、5、6、7]。带隙基准源提供的电压具有明确而稳定的特性,并且对电源电压和温度变化不敏感。基准源的精度和稳定性对后续电路的性能起着重要作用[8、9]。因此,已经提出了许多高阶温度补偿技术来降低 TC。[10、11、12] 中讨论了依赖于温度的电阻比补偿技术。其曲率补偿效果主要由两个温度
是通过化学,电化学,光或界面效应的半导体材料来实现的。半导体材料的重要参数是带隙(E G),以及最高占用和最低的无占用带与真空的位置。这些带被称为无机半导体的价和传统带。对于有机半导体,定义条带隙的频带通常称为最高的分子轨道(HOMO)和最低的无置分子轨道(Lumo)。半导体聚体的一个优点是能够通过分子设计调整带隙和同型和Lumo水平的位置。与Inor-Ganic半导体相反,化学结构的少量修饰会导致聚合物半导体的电气和光学正确变化。在发现聚乙烯和碘或砷五氟二氟掺杂后的高电导率后,被认为是用于用于抗静态涂料,电池或电池材料的金属的替代品,以作为金属的替代品。 [3]被认为是用于用于抗静态涂料,电池或电池材料的金属的替代品,以作为金属的替代品。[3]
新兴的宽带隙 (WBG) 半导体有望推动全球产业发展,就如同 50 多年前硅 (Si) 芯片的发明推动了现代计算机时代的到来一样。基于 SiC 和 GaN 的器件正开始变得更加商业化。与同类的基于 Si 的元件相比,这些 WBG 器件更小、更快、更高效,在更严苛的操作条件下也能提供更高的可靠性。此外,在此框架下,一种新型微电子级半导体材料被创造出来,其带隙甚至比之前建立的宽带隙半导体(如 GaN 和 SiC)还要大,因此被称为“超宽带隙”材料。这些材料包括 AlGaN、AlN、金刚石和 BN 氧化物基材料,它们在理论上具有更优越的性能,包括更高的临界击穿场、更高的工作温度和潜在的更高辐射耐受性。这些特性反过来又使得革命性的新器件可用于极端环境成为可能,例如高效功率晶体管(因为巴利加品质因数有所提高)、超高压脉冲功率开关、高效 UV-LED、激光二极管和 RF 电子设备。本期特刊发表了 20 篇论文,重点关注基于宽带隙的器件:设计、制造和应用。三篇论文 [1-3] 涉及未来 5G 应用和其他高速高功率应用的 RF 功率电子设备。其中九篇论文 [4-12] 探讨了宽带隙高功率器件的各种设计。其余论文涵盖了基于宽带隙的各种应用,如用于提高 GaN 基光子发射器光子提取效率的 ZnO 纳米棒 [13]、InGaZnO 薄膜晶体管 [14]、宽带隙 WO3 薄膜 [15]、银纳米环 [16、17] 和 InGaN 激光二极管 [18-20]。特别是在 RF GaN 器件方面,Kuchta 等人 [1] 提出了一种基于 GaN 的功率放大器设计,该设计降低了透射率畸变。Lee 等人 [2] 展示了一种用于 2.5 至 6 GHz 干扰系统的紧凑型 20 W GaN 内部匹配功率放大器,它使用高介电常数基板、单层电容器和分流/串联电阻器实现低 Q 匹配和低频稳定。 Lin 等人 [3] 通过集成厚铜金属化层实现了 Ka 波段 8.2 W/mm 的高输出功率密度。关于 GaN 功率器件,Wu 等人 [4] 研究了一种双 AlGaN 势垒设计以实现增强模式特性。Ma 等人 [5] 介绍了一种使用 GaN 的数字控制 2 kVA 三相分流 APF 系统。Tajalli 等人 [6] 通过进行缓冲分解研究了 GaN-on-Si 外延结构中垂直漏电和击穿的起源。可以确定每个缓冲层与垂直漏电和击穿电压相关的贡献。Sun 等人 [7] 研究了 GaN-on-Si 外延结构中垂直漏电和击穿电压的分布。[7] 提出了一种利用 TCAD 实现常关型 GaN HEMT 的新方法。该概念基于将栅极沟道方向从长水平方向转置为短垂直方向。Mao 等 [8] 在 IGBT 的集电极侧引入了一部分 p-polySi/p-SiC 异质结,以在不牺牲器件其他特性的情况下降低关断损耗。Kim 等 [9] 实现了 SiC 微加热器芯片作为下一代功率模块的新型热评估设备,并评估了其耐热性能。
这是根据Creative Commons Attribution许可条款(https://creativecommons.org/licenses/4.0)的开放访问出版物。请注意,重复使用,重新分配和复制尤其要求作者和来源都有信用。该许可受Beilstein档案术语和条件的约束:https://www.beilstein-archives.org/xiv/terms。
