由于其色心缺陷具有长自旋相干性和单光子发射特性,碳化硅成为领先的量子信息材料平台之一。碳化硅在量子网络、计算和传感中的应用依赖于将色心发射高效收集到单一光学模式中。该平台的最新硬件开发专注于角度蚀刻工艺,以保留发射极特性并产生三角形器件。然而,人们对这种几何结构中的光传播知之甚少。我们探索了三角形横截面结构中光子带隙的形成,这可以作为在碳化硅中开发高效量子纳米光子硬件的指导原则。此外,我们提出了三个领域的应用:TE 通滤波器、TM 通滤波器和高反射光子晶体镜,它们可用于高效收集和传播光发射模式选择。
激光剥离 (LLO) 通常用于将功能薄膜与下面的基板分离,特别是将基于氮化镓 (GaN) 的发光二极管 (LED) 从蓝宝石中分离出来。通过将 LED 层堆栈转移到具有定制特性的外来载体(例如高反射表面),可以显著提高光电器件的性能。传统上,LLO 是使用纳秒级的紫外激光脉冲进行的。当指向晶圆的蓝宝石侧时,蓝宝石/GaN 界面处的第一层 GaN 层吸收脉冲会导致分离。在这项工作中,首次展示了一种基于 520 nm 波长的飞秒脉冲的 LLO 新方法。尽管依赖于亚带隙激发的双光子吸收,但与传统的 LLO 相比,超短脉冲宽度可以减少结构损伤。在详细研究激光影响与工艺参数的关系后,我们开发了两步工艺方案,以制造边长可达 1.2 毫米、厚度可达 5 微米的独立 InGaN/GaN LED 芯片。通过扫描电子显微镜和阴极发光对分离的芯片进行评估,结果显示 LLO 前后的发射特性相似。
《材料》(ISSN 1996-1944)于 2008 年创刊。该期刊涵盖 25 个综合主题:生物材料、能源材料、先进复合材料、先进材料特性、多孔材料、制造工艺和系统、先进纳米材料和纳米技术、智能材料、薄膜和界面、催化材料、碳材料、材料化学、材料物理、光学和光子学、腐蚀、建筑和建筑材料、材料模拟和设计、电子材料、先进和功能性陶瓷和玻璃、金属和合金、软物质、聚合物材料、量子材料、材料力学、绿色材料、通用材料。《材料》为投稿高质量文章和利用其庞大的读者群提供了独特的机会。
关注点,包括但不限于折衷的同行评审过程,不适当或无关紧要的参考文献,其中包含非标准短语或不在期刊范围内。根据调查的发现,出版商与主持人协商,因此不再对本文的结果和结论充满信心。
芯片包装相互作用包装的影响是整体上互连结构遭受特殊的外部应力。以塑料翻转包裹为例;在填充底漆之前,最高的热载荷发生在模具固定期间。对空气间隙结构的CPI效应进行了250°C的反射温度的无PB-焊料。包装中的基板是有机的,模具尺寸为8x8 mm 2。在略有不同的3D有限元模型上,多级子模型技术和VCCT用于计算最外层焊球下相关接口处的裂纹驱动力。[8,9]在蚀刻停止/钝化(ESL)和低k介电或气隙之间,在每个金属水平上放置在每个金属水平上放置的Horizontal裂纹计算错误。每个裂纹宽0.1 µm,长2 µm,在接线方向上延伸,如图4所示。在完整的低K集成方案中,由于SIO2和低K层之间的弹性不匹配,在M3间的裂纹3中,ERR最高。首先检查了空气间隙实施的效果,用于跨层次的全气隙结构,在该结构中,空气间隙取代了M3的所有金属间介电(IMD)。这导致裂纹3中的ERR中的大约5倍急剧增加。应注意的是
Linh 等人 35 发现用离子半径较大的碱金属(M = Li、Na 和 K)取代(Bi 0.5 M 0.5 )TiO 3 会增加其直接带隙。将 MCaF 3(M = K、Cs)中的 K 位取代为 Cs 位,可将带隙从间接变为直接,从而改善光学特性。36 Gillani 等人还报道将碱土金属(Mg、Ca、Ba)掺杂到 SrZrO 3 中可使带隙从间接变为直接。37,38 此外,利用静水压力将带隙从间接变为直接被证明是有益的,就像在许多立方钙钛矿中所看到的那样。 39 – 44 通过施加外部压力,卤化物立方钙钛矿 CsBX 3 (B ¼ Sn, Ge; X ¼ Cl, Br) 的带隙减小到零,从而导致半导体到金属的转变。45 – 49 在静水压力下,还对 Ca 基立方碱金属卤化物钙钛矿 KCaX 3 (X ¼ F, Cl) 50,51 和 ACaF 3 (A ¼ Rb, Cs) 进行了第一性原理研究。52,53
由于半导体纳米粒子具有独特的机械、光学、光子和电学特性,科学界对其研究突飞猛进。[1-4] 借助 Wein2K 代码,他们最近报道了 Zn1–xMnxS (0 ≤ x ≤ 1) 的机械、结构、电学、磁性和光学行为。纳米材料的质量很大程度上取决于它们的表面积与体积的比,这会影响其中的几个属性。[5-8] 半导体的带隙是其最重要和最基本的特性之一。半导体材料的电学和光学特性从根本上受带隙的影响。[9-14] 因此,为了更好地了解它们的特性,研究 SCN 的带隙增长至关重要。半导体的大带隙使其在各种应用中都很有用。尽管硅光子纳米器件已经被广泛制造和利用,但体硅的间接和微小带隙限制了它的利用。许多理论和实验研究人员采取了与尺寸相关的带隙立场。[15-17] 利用光致发光光谱,
宽带隙 (WBG) 半导体材料,例如碳化硅 (SiC)、氮化镓 (GaN) 或氧化镓 (Ga2O3),使电力电子元件比硅基 (Si) 元件更小、更快、更可靠、更高效。目前,全球约有一半的总能源消耗是电力,预计到 2030 年,80% 的电力将通过电力电子设备流动。然而,基础科学和材料科学还有很大的发展空间;宽带隙材料确实无处不在;几乎整个地壳都是由宽带隙氧化物形成的,还有许多硫族化合物、卤化物、有机和生物材料也是宽带隙材料,还有许多其他可能性。本期特刊是一系列文章的集合,报告了最近获得的结果的简要评论以及在这一广泛研究领域产生的新发现。