量子信息利用独立和纠缠的量子系统来执行一系列信息处理任务,这比传统系统更具优势 [1]。量子通信是量子信息的一个主要分支,其目的是通过通信链路(光纤或自由空间信道)在远程方(通常称为 Alice 和 Bob)之间忠实地传输光子量子态 [2]。量子密钥分发 (QKD) 是一种重要的量子通信协议,其目标是在 Alice 和 Bob 之间远程生成共享密钥 [3-5]。其有效性已在长距离上得到证实 [6],这对于实际应用来说是理想的。过去,大多数量子通信实验都集中在点对点应用上,直到最近,人们对网络和多用户应用的兴趣才有所增加,并将大量精力集中在支持未来量子计算机网络的底层通信基础设施上,即所谓的量子互联网 [7]。与标准通信网络一样,路由将是实现单光子动态功能的一项基本功能。实现具有潜在快速响应时间的单光子路由器的直接方法是使用干涉仪 [8 – 11]。在 [8] 中,使用在其一条臂中带有相位调制器的马赫-曾德尔干涉仪 (MZI) 将单光子按需路由到其一个输出。基于 MZI 设计的具有两个输入和两个输出的单光子开关也已提出 [9]。在 [10] 中,还提出了一种基于 MZI 的耦合器,其中光子可以作为可调开关以任何分光比路由。在这些论文中,提出了三种路由配置,由于使用 MZI,所有这些配置都需要额外的主动相位稳定系统。为了获得更稳定的设计,另一种配置采用了 Sagnac 光纤
摘要:最近,提出了一种使用非线性干涉仪进行量子状态进行工程的方法,以实现近乎理想的单模操作和近乎义务的精确状态工程(L. Cui等,Phys。修订版a 102,033718(2020)),并且可以在不降低亮度和收集效率的情况下创建高纯度双光子状态。在这里,我们研究了非线性干扰方法的粗或可调节性,以将建设性干扰模式匹配到标准100-GHz DWDM通道的传输窗口中。对于非线性干扰效应的各种条件,测量了关节频谱强度光谱。我们表明该方法具有粗略和精细的能力,同时保持其高光谱纯度。我们期望我们的结果扩大了非线性干扰方法的有用性。通过此方法设计的光子对生成将是量子信息过程的绝佳实用来源。
摘要:执行适当的量子信息处理的关键技术是在独立的单个光子之间获得高可见性量子干扰。影响量子干扰的关键元素之一是当单个光子通过分散介质时发生的组速度分散体。我们从理论上和实验上证明,如果两个独立的单个光子经历了相同量的脉冲拓宽,则可以取消组速度分散对两光子干扰的影响。该分散取消效果可以应用于具有多个独立单个光子的多路线线性干涉仪。由于多路径量子干涉仪是量子通信,光子量子计算和玻色子采样应用的核心,我们的工作应在量子信息科学中找到广泛的适用性。
原子级厚度的二维 (2D) 过渡金属二硫属化物 (TMD) 超导体能够实现均匀、平坦和干净的范德华隧穿界面,这促使它们被集成到传统的超导电路中。然而,必须在 2D 材料和三维 (3D) 超导体之间建立完全超导接触,才能在这种电路中采用标准微波驱动和量子比特读出。我们提出了一种在 2D NbSe 2 和 3D 铝之间创建零电阻接触的方法,这种接触表现为约瑟夫森结 (JJ),与 3D-3D JJ 相比具有更大的有效面积。由 2D TMD 超导体形成的器件受到薄片本身的几何形状以及与块体 3D 超导引线的接触位置的强烈影响。我们通过金兹堡-朗道方程的数值解提出了 2D-3D 超导结构中超电流流动的模型,并与实验结果非常吻合。这些结果表明我们向新一代混合超导量子电路迈出了关键一步。
摘要:多功能玻璃因其出色的机械、光学、热学和化学性能组合而在许多成熟和新兴行业中很常见,例如微电子、光伏、光学元件和生物医学设备。通过纳米/微图案化进行表面功能化可以进一步增强玻璃的表面特性,将其适用性扩展到新的领域。尽管激光结构化方法已成功应用于许多吸收材料,但透明材料在可见激光辐射下的可加工性尚未得到深入研究,尤其是对于生产小于 10 µ m 的结构。在这里,基于干涉的光学装置用于通过可见光谱中 ps 脉冲激光辐射的非线性吸收直接对钠石灰基板进行图案化。制作的线状和点状图案具有 2.3 至 9.0 µ m 之间的空间周期和高达 0.29 的纵横比。此外,在这些微结构中可以看到特征尺寸约为 300 nm 的激光诱导周期性表面结构 (LIPSS)。纹理化表面显示出显著改变的特性。也就是说,经过处理的表面具有增强的亲水行为,在某些情况下甚至达到超亲水状态。此外,微图案充当浮雕衍射光栅,将入射光分成衍射模式。优化了工艺参数,以产生具有超亲水特性和衍射效率超过 30% 的高质量纹理。
能带结构各点之间的散射矢量。在这方面,傅里叶变换的 QPI 图提供了拓扑绝缘体存在的首批实验证据之一,[4]因为它揭示了背向散射矢量处强度的“缺失”,正如理论所预测的那样。从理论的角度来看,QPI 图的计算主要基于模型方法,例如在拓扑绝缘体表面,[5]其中表面能带结构可以用简单的模型哈密顿量来近似。然而,一般而言,基于密度泛函的方法对于表面电子结构的实际描述是必需的,特别是杂质势,其中杂质周围的电荷弛豫在正确描述散射相移中起着重要作用。密度泛函计算的一个困难是缺陷引起的密度振荡范围非常大,可以达到几十甚至几百纳米,因此超晶胞方法实际上无法达到这个极限。这些挑战只能通过从头算格林函数嵌入方法来解决,比如 Korringa-Kohn-Rostoker(KKR)方法。作为一个应用的例子,我们参考了 Lounis 等人 [6] 对 Cu(111) 和 Cu(001) 表面上的 QPI 的计算,这是由于表面下埋藏着一个孤立杂质。这些结果表明,利用格林函数技术可以在相当大的表面积上对 QPI 图进行从头算计算。然而,对于傅里叶变换的 QPI 图,直接用格林函数卷积来表示结果是可行的[7],避免了计算大表面积中实空间图的中间步骤。在本文中,我们将探讨这个问题,并给出它在拓扑绝缘体领域的应用。在第 2 节中,我们概述了 KKR 方法中实空间和傅里叶变换 QPI 映射的形式。此外,我们讨论了多杂质实际情况的傅里叶变换 QPI,并认为多杂质问题可以用单杂质结果很好地近似。我们还讨论了扩展的联合态密度方法 (exJDOS)。在第 3 节中,我们将我们的形式应用于具有表面杂质的拓扑绝缘体 Bi 2 Te 3。这在 JuKKR 代码包中实现。[8] 最后,我们在第 4 节中进行了总结。
1中国科学技术大学现代物理学系的Hefei全国物理科学实验室,中国赫菲230026,中国2上海分支,CAS CAS CAS CAS量子信息和量子物理学卓越中心,科学与技术大学,中国科学技术大学,上海201315年,中国量子研究中心,201315技术,Jinan 250101,中国5家学会,哈佛大学,剑桥,马萨诸塞州02138,美国6斯坦福大学,斯坦福大学,斯坦福大学,斯坦福大学,加利福尼亚州斯坦福大学,加利福尼亚州94305,美国7理论物理中心,MIT,MIT,MIT,MIT,MA 02139,MA 02139,美国8 T. D. Lee Institute,Shangia jiao,Shanghai Jiao,Shanghai Jiao,Shanghai Jiao,Shanghai Jiao Wilczek Quantum Center, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China 10 Department of Physics, Stockholm University, Stockholm SE-106 91, Sweden 11 Department of Physics and Origins Project, Arizona State University, Tempe, AZ 25287, USA 12 qiangzh@ustc.edu.cn 13 wilczek@mit.edu 14 pan@ustc.edu.cn
摘要 — 多通道校准对于检测移动目标并准确估计其位置和速度至关重要。本文介绍了一种快速有效的沿轨多通道系统校准算法,特别是针对时空自适应处理 (STAP) 技术。所提出的算法校正了接收通道的相位和幅度偏移,还考虑了沿斜距和方位角时间的多普勒质心变化(例如由大气湍流引起)。多普勒质心变化的知识对于准确的杂波协方差矩阵估计尤其重要,这是 STAP 有效抑制杂波所必需的。重要的校准参数和偏移量直接从距离压缩训练数据中估计。基于使用 DLR 机载系统 F-SAR 获取的真实多通道 X 波段雷达数据对所提出的算法进行了评估,并与最先进的数字通道平衡技术进行了比较。实验结果表明,所提出的校准算法在实时应用中具有潜力。
MZI-001是基于自由空间光学器件的纤维纤维紧凑型Mach-Zehnder干涉仪,用于检测光学频率的变化。该设备配备了两个快速光电电视器,用于平衡检测干涉仪的两个互补输出。设备的自由光谱范围(FSR)或零交叉间距被准确地定义为2%以内,这比全纤维方法具有明显的优势。此外,订购时可以从10 GHz到100 GHz的高度选择FSR,从而使其灵活地进行系统集成。最后,MZI-001的自由空间光学设计消除了通常与全纤维干涉仪相关的极化灵敏度。MZI-001非常适合在波长扫描的光源中应用,以确定其瞬时频率,OCT系统作为用于系统触发的频率时钟,用于检测传感信号光谱漂移的光纤传感器,以及用于检测激光器频率漂移的相干通信系统中。
摘要 多粒子干涉是量子信息处理的关键资源,玻色子采样就是一个典型例子。因此,鉴于其脆弱性,一个必不可少的条件是为其验证建立一个坚实可靠的框架。然而,尽管已经为此引入了几种协议,但该方法仍然支离破碎,无法为未来的发展构建一个大局。在这项工作中,我们提出了一种操作性的验证方法,该方法涵盖并加强了这些协议的最新技术。为此,我们分别将贝叶斯假设检验和统计基准视为小规模和大规模应用最有利的协议。我们在有限样本量下对它们的操作进行了数值研究,将之前的测试扩展到更大的维度,并针对两种用于经典模拟的对抗算法:平均场采样器和都市化独立采样器。为了证明对改进验证技术的实际需求,我们展示了数值模拟数据的评估如何取决于可用的样本量,以及内部超参数和其他实际相关的约束。我们的分析为验证的挑战提供了一般性的见解,并可以启发具有可衡量的量子优势的算法的设计。