(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2025年3月1日发布。 https://doi.org/10.1101/2025.02.25.640019 doi:Biorxiv Preprint
最近对深度学习可靠性(DL)进行骨表面修饰(BSM)的批评,例如Courtenay等人提出的。(2024)基于一系列早期发表的研究,引起了人们对该方法疗效的担忧。然而,他们的批评忽略了关于在DL中使用小型和不平衡数据集的基本原则。通过减少培训和验证集的大小 - 在训练集中仅比测试集大20%,而某些班级验证集则在10张图像下大 - 这些作者可能无意中生成了不足的模型,以尝试复制和测试原始研究。此外,图像预处理期间编码的错误导致了根本上有偏见的模型的发展,这些模型无法有效地评估和复制原始研究的可靠性。在这项研究中,我们并不是要直接反驳其批评,而是将其作为重新评估DL在Taphonomic研究中的效率和解决方案的机会。我们通过将它们作为新的基线模型与旨在解决潜在偏见的优化模型进行比较,重新审视了应用于三个目标数据集的原始DL模型。具体来说,我们考虑了质量不佳的图像数据集引起的问题,并且可能过于适应验证集。为了确保我们的发现的鲁棒性,我们实施了其他方法,包括增强的图像数据增强,原始训练验证集的K折交叉验证以及使用模型 - 敏捷的元学习(MAML)的几次学习方法。后一种方法促进了单独的培训,验证和测试集的无偏使用。所有方法的结果都是一致的,与原始基线模型相当(如果几乎并不相同)。作为最终验证步骤,我们使用了最近生成的BSM的图像作为基线模型的测试集。结果几乎保持不变。这加强了以下结论:原始模型不受方法论上的过度拟合,并突出了它们在区分BSM中的细微效力。但是,重要的是要认识到这些模型代表了试点研究,受原始数据集的局限性在图像质量和样本量方面的限制。利用具有更高质量图像的较大数据集的未来工作具有增强模型概括的潜力,从而提高了Taphononic研究中深度学习方法的适用性和可靠性。
缩写:ANZTCT,澳大利亚和新西兰移植和蜂窝疗法注册表; BM,骨髓; BM,骨髓; CI,置信区间; CR,完全响应; Em,东地中海地区; HCT,造血细胞移植; HCT-CI,造血细胞移植合并症指数;人力资源,危险比; IMID,免疫调节药物; IQR,四分位数范围; ISS,国际分场评分; NRM,非释放死亡率; OS,整体生存; PB,外周血; PFS,无进展的生存; PI,蛋白酶体抑制剂; PR,部分反应; R/R,复发/难治; RI,复发发生率; VGPR,非常好的部分响应。欧洲数据由EBMT提供,还包括来自南非的患者(n = 142),哥伦比亚(n = 12),新加坡(n = 48),伊拉克(n = 1),伊朗(n = 114),印度(n = 3)和巴西(n = 7)。
图7肝脏类器官中的脂质代谢。(a)在未处理的条件下用DAPI(蓝色,核)和尼罗河红(红色,脂质液滴)染色的左图,肝脏器官,以及在胺碘酮(40μm)或乙醇(200 nm)24小时处理下。右图,荧光定量(n = 5)。(b)左图;肝癌与LDL-Bodipy(绿色)在未经治疗的情况下和甲伐他汀治疗后孵育。核用DAPI(蓝色)染色。右图,荧光定量(n = 7)。使用未配对的t检验评估统计显着性,其p值截止设置为p <0.05。*,p值<0.05; **,p值<0.01; ***,p值<0.001; NS,并不重要。
为人类肌肉茎(Hmustem)细胞获得的临床前数据表明其在肌肉损伤的背景下的巨大修复能力。但是,它们的临床潜力受到移植后中等生存能力的限制。要克服这些局限性,它们在保护环境中的封装将是有益的。在这项研究中,研究了使用外部或内部凝胶化获得的可调节钙 - 阿尔金酸盐水凝胶作为Hmustem细胞封装的新策略。使用原子力显微镜通过压缩实验来表征这些水凝胶的机械性能。测量的弹性模量强烈取决于胶凝模式和钙/藻酸盐浓度。分别在内部和外部凝胶化后制备的水凝胶获得了从1到12.5 kPa和3.9至25 kPa的值。此外,水凝胶的机械性能差异是由其内部组织产生的,具有内部凝胶的各向同性结构,而外部模式导致各向异性。进一步表明,释放后,保留了藻类水凝胶中掺入的Hmustem细胞的生存力,形态和肌原分化char术。这些结果表明,封装在钙钙酸钙水凝胶中的Hmustem细胞保持其功能,从而可以开发肌肉再生方案以提高其治疗功效。
免疫原性细胞死亡(ICD)在临床上具有相关性,因为通过ICD杀死恶性细胞的细胞毒素会引起抗癌免疫反应,从而延长了化学疗法的影响,而不是治疗中断。ICD的特征是一系列刻板的变化,增加了垂死细胞的免疫原性:钙网蛋白在细胞表面的暴露,ATP的释放和高迁移率组Box 1蛋白以及I型Interferon反应。在这里,我们研究了抑制肿瘤激酶,间变性淋巴瘤激酶(ALK)的抑制可能性,可能会触发ICD在染色体易位因染色体易位而激活ALK的变性大细胞淋巴瘤(ALCL)中。多种证据辩称,有利于克唑替尼和塞替尼在ALK依赖性ALCL中的特异性ICD诱导作用:(i)它们在药理学相关的低浓度上诱导ICD Stigmata; (ii)可以通过ALK敲低模仿其ICD诱导效应; (iii)在支配碱性突变体的背景下失去了效果; (iv)通过抑制ALK下游运行的信号转导途径来模仿ICD诱导效应。当将经CERITIN的鼠类碱性ALCL细胞接种到免疫能力合成小鼠的左侧时,它们诱导了一种免疫反应,从而减慢了植入在右孔中的活Alcl细胞的生长。尽管Ceritinib诱导淋巴瘤小鼠的肿瘤的短暂收缩,无论其免疫能力如何,在免疫降低效率的背景下,复发频率更高,从而降低了Ceritinib对生存率的影响大约50%。完全治愈仅发生在免疫能力的小鼠中,并赋予了与表达同一碱性淋巴瘤的保护,但不与另一种无关的淋巴瘤进行保护。此外,PD-1阻滞的免疫疗法往往会提高治愈率。总的来说,这些结果支持了以下论点,即特异性ALK抑制作用通过诱导ICD诱导ALK-阳性ALCL刺激免疫系统。
进行性非综合性感觉性听力损失(PNSHL)是造成感觉障碍的最常见原因,影响了65岁以上的三分之一以上的个体。PNSHL包括噪声引起的听力损失(NIHL)和遗传性耳聋形式,其中包括延迟发作的常染色体显性听力损失(AD PNSHL)。pnshl是基因疗法的主要候选日期,因为已经对PNSHL进行了广泛的研究,并且在疾病的鉴定与听力损失的发作之间存在一个潜在的较宽窗口。存在几种基因治疗策略,显示出靶向PNSHL的潜力,包括病毒和非病毒方法,以及基因编辑与基因调节方法。充分探索这些疗法策略的潜力,这是人类的体外模型
推荐引用推荐引用Visvanathan,Abhirami; Saulnier,Olivier; Chen,Chuan;霍尔迪普尔,帕尔西夫;奥利斯(Orisme),怀尔德(Wilda); Alberto的Delaidelli; Shin,Seungmin;米尔曼,杰克;科比,安德鲁; Abeysundara,Namal;吴,Xujia;亨德里克斯(Liam D);帕蒂尔,维卡斯; Zahedeh Bashardanesh;戈尔瑟(Joseph);利文斯顿,布林G;中岛,武马; Funakoshi,Yusuke; ong,温妮; Rasnitsyn,Alexandra; Aldinger,金伯利A;里奇曼(Richman),科里(Cory M); Van Ommeren,Randy;李,约翰·J·; Ly,Michelle; Vladoiu,Maria C;凯特林的卡拉斯;巴林,波琳娜;埃里克森(Erickson),安德斯(Anders W);方,弗农;张,乔;苏阿雷斯,劳尔A;王,豪;黄,宁;帕洛塔,乔纳尔·G;道格拉斯(Tajana); Haapasalo,Joonas; Razavi,Ferechte; Silvestri,Evelina; Sirbu,Olga;索曼莎(Samantha)蠕虫; Kameda-Smith,Michelle M;吴,小牛;丹尼尔斯,克雷格; Michaelraj,Antony K;巴杜里(Bhaduri),阿帕纳(Aparna);丹尼尔·舒拉梅克;铃木,Hiromichi; Garzia,Livia;艾哈迈德,纳比尔;克莱德曼(Kleinman),克劳迪亚(Claudia L);斯坦,林肯D;德克斯,彼得;邓纳姆,克里斯托弗;纳达(Jabado),纳达(Nada); Rich,Jeremy N;李,魏; Sorensen,Poul H; Wechsler-Reya,Robert J;魏斯,威廉A; Millen,Kathleen J;埃里森(David W) Dimitrov,Dimiter S;和泰勒(Michael D),“早期的菱形唇脂蛋白+VE干细胞中的人类特异性神经血管生态裂市场启动并维持3组髓母细胞瘤”(2024)。教职员工出版物。2593。https://digitalcommons.library.tmc.edu/baylor_docs/2593
免疫功能低下的个体中的呼吸道合胞病毒(RSV)感染通常会导致长期疾病,发展为严重的下呼吸道感染甚至死亡。造血干细胞移植(HCT)成年人的宿主免疫环境如何影响急性感染期间的病毒遗传变异。在本研究中,我们从从正常(<14天)且延迟(≥14天)的RSV清除率的HCT成年人纵向收集的样品中对RSV/A或RSV/B进行了整个基因组测序。我们确定了RSV的宿主间和宿主内遗传变异以及突变对推定糖基化位点的影响。RSV的宿主变化以附着(G)和融合(F)糖蛋白基因为中心,然后是聚合酶(L)和矩阵(M)基因。有趣的是,RSV/A和RSV/B的正常清除组和延迟清除组之间的总体遗传变异是恒定的。主宿内变异主要发生在G基因中,然后是非结构蛋白(NS1)和L基因。但是,仅在G基因中出现或仅在延迟的病毒清除率组中出现终止密码子和移码突变的增益或丢失。G基因中O连锁糖基化位点的潜在增益或丧失发生在RSV/A和RSV/B分离株中。 对于RSV F基因,在抗原表位中的三个RSV/B分离株中,N连接的糖基化位点的丧失发生。 口服和雾化的利巴韦林都不会在L基因中引起任何突变。G基因中O连锁糖基化位点的潜在增益或丧失发生在RSV/A和RSV/B分离株中。对于RSV F基因,在抗原表位中的三个RSV/B分离株中,N连接的糖基化位点的丧失发生。口服和雾化的利巴韦林都不会在L基因中引起任何突变。总而言之,长时间的病毒脱落和免疫缺陷导致RSV变异,尤其是在G基因的结构突变中,可能与免疫逃避有关。因此,对免疫功能低下患者的RSV分离株进行测序和监测至关重要,因为它们可以产生逃生突变体,从而影响即将发生的疫苗和治疗的有效性。
标题:1自体造血干细胞移植的有效性与2 fingolimod,natalizumab和ocrelizumab在高度活跃的复发多个3个硬化症4 5作者(限制为50位作者)中:6 Tomas Kalincik,MD,MD,MD,Phd 1,2; Sifat Sharmin,博士1,2; Izanne Roos,MBCHB,博士1,2; Mark S.7 Freedman,医学博士3;哈罗德·阿特金斯(Harold Atkins),医学博士4;约阿希姆·伯曼(Joachim Burman),医学博士,博士5;詹妮弗·梅西(Jennifer Massey),MBBS,8博士6,7;伊恩·萨顿(Ian Sutton),MBBS,博士6,8;芭芭拉·威瑟斯(Barbara Withers),医学博士,博士9,7;理查德·麦克唐纳(Richard MacDonell),医学博士,9博士10,11;医学博士Andrew Grigg博士12,11; ØivindTorkildsen,医学博士,博士13; Lars Bo,医学博士,博士13; 10 Anne Kristine Lehmann,医学博士,博士14;伊娃·库巴拉·哈夫多瓦(Eva Kubala Havrdova),医学博士15;伊娃·克拉苏洛娃(Eva Krasulova),医学博士,11博士学位15; Marek Trneny,医学博士,博士16;托马斯·科扎克(Tomas Kozak),医学博士,博士17; Anneke van der Walt,MBBS,12博士18,19; Helmut Butzkueven,MBBS,博士18,19; Pamela McCombe,MBBS 20,21; Olga Skibina,13 Mbbs 22,23,18; Jeannette Lechner-Scott,医学博士,博士24,25;芭芭拉·威尔肯斯(Barbara Willekens),医学博士,博士26,27; 14 Elisabetta Cartechini,医学博士28; Serkan Ozakbas,医学博士29; Raed Alroughani,医学博士30;詹斯·库尔(Jens Kuhle),15 MD,博士学位31;弗朗切斯科·帕蒂(Francesco Patti),医学博士32;,33;皮埃尔·杜奎特(Pierre Duquette),医学博士34;医学博士Alessandra Lugaresi,16 PhD 35,36;萨米亚·J·库里(Samia J. Khoury),医学博士,博士37; Mark Slee,医学博士,博士38; Recai Turkoglu,医学博士39; 17 Suzanne Hodgkinson,医学博士40; Nevin John,医学博士,博士41,42; Davide Maimone,医学博士43; Maria Jose 18 SA,MD 44;文森特·范·佩奇(Vincent van Pesch),医学博士,博士45,46;奥利弗·格拉赫(Oliver Gerlach),医学博士,博士47,48; Guy Laureys,19 MD 49; Liesbeth van Hijfte,医学博士49; Rana Karabudak,医学博士50; Daniele Spitaleri,医学博士51; Tunde 20 Csepany,医学博士,博士52; Riadh Gouider,MD 53,54; Tamara Castillo-Triviño,医学博士55;布鲁斯·泰勒(Bruce Taylor),21 MD,博士64,65; 22 Basil Sharrack,医学博士,博士56;约翰·A·斯诺登(John A Snowden),医学博士,博士57 23代表MSBASE作者和MSBASE合作者。24 25 MSBASE作者将在小组作者身份中列出:26 Saloua Mrabet,MD 53,54;贾斯汀·加伯(Justin Garber),MBBS 58; Jose Luis Sanchez-Menoyo,医学博士59; Eduardo 27 Aguera-Morales,MD 60; Yolanda Blanco,医学博士61; Abdullah al-Asmi,MD 62; Bianca Weinstock-28 Guttman,MD 63; Yara Fragoso,MD 66; Koen de Gans,MD 67; Allan Kermode,医学博士,博士68,69 29 30 31 32隶属关系:33 1,神经免疫学中心,皇家墨尔本皇家墨尔本医院神经病学系,澳大利亚墨尔本34号,澳大利亚墨尔本34 34,Core 35 2,核心医学系,墨尔本大学,墨尔本大学,墨尔本大学,澳大利亚澳大利亚澳大利亚墨尔本大学,澳大利亚36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 3 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 3 36 36 36 3 36 36 36 3 36 36 33 3 33,医学院3. 4,渥太华医院研究所,渥太华大学,渥太华,加拿大39 5。医学科学系,神经病学,乌普萨拉大学,乌普萨拉,瑞典40 6。澳大利亚悉尼圣文森特医院悉尼神经病学系41 7。St Vincent的临床学校,新南威尔士大学,澳大利亚悉尼42 8。 悉尼大学,澳大利亚悉尼43 9。 血液学系,澳大利亚悉尼圣文森特医院悉尼44 10。 澳大利亚墨尔本奥斯汀健康神经病学系45 11。 墨尔本大学,澳大利亚墨尔本46 12。 血液学系,奥斯汀健康,澳大利亚墨尔本47 13。 挪威卑尔根卑尔根大学医院神经病学系48 14。 挪威卑尔根北汉氏大学医院血液学系49 15。 血液学系,布拉格查尔斯大学第一学院和捷克共和国布拉格普拉格通用大学医院52St Vincent的临床学校,新南威尔士大学,澳大利亚悉尼42 8。悉尼大学,澳大利亚悉尼43 9。血液学系,澳大利亚悉尼圣文森特医院悉尼44 10。澳大利亚墨尔本奥斯汀健康神经病学系45 11。墨尔本大学,澳大利亚墨尔本46 12。血液学系,奥斯汀健康,澳大利亚墨尔本47 13。挪威卑尔根卑尔根大学医院神经病学系48 14。挪威卑尔根北汉氏大学医院血液学系49 15。血液学系,布拉格查尔斯大学第一学院和捷克共和国布拉格普拉格通用大学医院52神经病学系和临床神经科学中心,捷克共和国布拉格的布拉格50号医学院第一院