摘要。3D高斯碎片在实时神经渲染中引起了广泛的关注和应用。同时,人们对这种技术在稀疏观点中的限制,绩效和鲁棒性等方面引起了人们的关注,从而导致了各种改进。然而,显然缺乏关注分裂本身固有的局部仿射近似引入的投影错误的基本问题,以及这些错误对照片真实渲染质量的结果影响。本文介绍了3D gaus-sian脱落的投影误差函数,从投影函数的一阶泰勒膨胀开始,从剩余的误差开始。分析建立了误差与高斯平均位置之间的相关性。subsemess,利用功能优化理论,本文分析了该函数的最小值,以提供最佳的投影策略,以涉及最佳的高斯分裂,这可以使各种摄像机模型可观。实验验证进一步提出了这种投影方法可以减少伪影,从而导致更令人信服的现实渲染。
我们分析了将月球传感器测量结果与地月空间传感器在地月拉格朗日点 1 晕轨道上融合的轨道质量性能优势。假设了十几种传感器架构来量化跟踪不同系列地月目标的轨迹估计误差。我们使用了各种几何视角以及仅角度和距离测量。使用无迹卡尔曼滤波器处理度量观测值,底层动力学模型由圆形限制三体运动方程组成。整体轨道质量性能以惯性位置、速度和加速度估计误差的平均值和标准差来表示。结果表明,由四个中纬度窄视野仅角度观察者组成的月球传感器架构可以保持 100% 的轨道保管。对所有地月目标的平均位置 RSS 误差均低于 1 公里。我们发现,增加一个仅基于太空的角度观测者可将平均位置估计 RSS 误差降低五倍。总体而言,最佳架构性能组合包含基于月球和基于太空的角度和范围观测。
巴斯和东北萨默塞特郡议会有法定义务确保有足够的高质量教育地点,以满足包括早期在内的所有教育阶段的当前和未来需求。(2006年和2016年的《儿童保健法》)预计未来的提供将通过私人,自愿或独立(PVI)部门提供,理事会仅是最后一个度假胜地的提供者。最新的育儿充足评估(2023年春季)表明,儿童中心区域之间的育儿场所数量仍然有所不同,这是报道足够的手段。位置的数量与估计的儿童数量比例计算。该数据由儿童中心区域细分,以通过较小的地理区域进行分析。它指出“ Paulton和Radstock儿童中心地区的托儿服务水平最低。在Radstock和Paulton地区有重大的新住房发展,这导致了在不足的每个区域内的育儿场所比浴室和东北萨默塞特郡内其他地区的比率(即少于理事会的平均位置比率)正在进行的工作以增加所提供的地点数量。
在许多情况下,对对象进行排名或排序是一个自然问题。从数学上讲,这项任务相当于从有限集合中找到“好的”排列,或者更一般地,从好的排列分布中抽样。这可能出奇地困难。例如,假设我们观察到一组成对的相互作用,如竞争、偏好或冲突,每个相互作用都表明一个对象的排名高于另一个对象,我们的目标是将它们从最强到最弱进行排序。类似地,我们可能想要重建节点加入不断增长的网络的顺序 [1,2],例如在一场流行病中,接触追踪表明一个人感染了另一个人。在这种情况下,找到一个排列,使排序“错误”的违规数量最少,是 NP 难的,也就是说,这是计算机科学中最难的优化问题之一 [3]。即使存在与所有观察到的相互作用一致的排列,计算这种排列的数量或计算给定对象的平均位置也是#P-完全的[4,5]。因此,所有这些问题被认为在最坏情况下会花费指数时间。成对比较可以表示为有向图G,其边(i,j)表示i≺j,即i“击败”j,因此可能排名高于j。我们假设一个生成模型:给定一个真实排列π,我们以概率P(G |π)[6]观察到G。如果所有排列都是先验相等的,并且如果我们以概率f(πi,πj)独立地观察到每个i≺j,则后验具有以下形式