推力矢量构成喷嘴优化和增加功能的下一步。喷嘴用于将射流引导到发动机轴以外的方向上,以产生飞机重心周围的横向力和矩,可用于飞机操纵。在二维螺距中只有喷嘴可以在垂直平面内偏转,因此喷嘴补充了水平控制表面。有几种类型的推力向量喷嘴。例如,有2-D和3-D推力向量的喷嘴。ITP喷嘴是3-D矢量喷嘴。也,达到气射流偏转的方法有不同的方法:最有效的方法是仅机械偏转截面,从而最大程度地减少对喉咙上游(Sonic)部分的影响。取决于此不同部分的控制水平,con-di喷嘴可以是两种类型:
我们提出了一种由两个约瑟夫森结组成的电路设计,这两个结由一个非互易元件(回转器)耦合,回转器的基态空间是双重退化的。基态是 Gottesman-Kitaev-Preskill 代码的近似代码字。我们通过计算该系统与晶体中单个电子的问题的等效性来确定电路的低能动态,该电子被限制在二维平面内,并受到强均匀磁场的影响。我们发现该电路可以自然地抵御超导电路中常见的噪声信道,例如电荷和通量噪声,这意味着它可用于被动量子误差校正。我们还为实验实现提出了实际的设计参数,并描述了执行逻辑一和二量子比特门、状态准备和读出的可能协议。
本研究的重点是建立和验证一种方法,以准确测量非常导电薄膜的平面内电导率,例如单晶金属或半导体,2D和纳米结构材料。通过整合2Ω和3Ω测量值,该方法对绝缘叠层器的浅表热边界电阻不敏感,从而可以精确地估计在子材料或多层堆栈顶部生长的导电膜的平面热膜内热性能。该提出的技术用于分析硅在绝缘子堆栈中的导热率,其顶层由340 nm厚的单晶硅硅组成。测量是在250至325 K的温度范围内进行的。结果证实了该方法正确评估硅膜的热导率降低的能力与大量值相比,这表明了其对导电薄膜导电性表征的可靠性。
图1。a)21个手敲门坐标在检测到的手部区域内的坐标,b)468 3D面对地标和c)33个车身地标位置,分别使用Mediapipe Hand,Facemesh和姿势解决方案。 为了解决这个问题,我们将手分为四个姿势,即前部,内部,外部和背面,以增强穴位检测过程的准确性和可靠性。 为此,为了确定棕榈正常,我们在棕榈的平面内选择了三个点。 地标0用作我们的参考点,我们用它来计算向量1和2。 通过采用这些向量的交叉产物,我们获得了棕榈正常(图 2)。 最后,我们计算z方向和棕榈正常之间的角度。 此角度有助于我们区分不同的手姿势。 脸部使用了相同的方法。 通过使用MediaPipe提供的地标坐标,可以通过应用简单的数学和代数方程(例如等式1和eq.2)来得出兆头位置是可行的。 这些计算基于地标和特定穴位位置之间的相对距离和角度。a)21个手敲门坐标在检测到的手部区域内的坐标,b)468 3D面对地标和c)33个车身地标位置,分别使用Mediapipe Hand,Facemesh和姿势解决方案。为了解决这个问题,我们将手分为四个姿势,即前部,内部,外部和背面,以增强穴位检测过程的准确性和可靠性。为此,为了确定棕榈正常,我们在棕榈的平面内选择了三个点。地标0用作我们的参考点,我们用它来计算向量1和2。通过采用这些向量的交叉产物,我们获得了棕榈正常(图2)。最后,我们计算z方向和棕榈正常之间的角度。此角度有助于我们区分不同的手姿势。脸部使用了相同的方法。通过使用MediaPipe提供的地标坐标,可以通过应用简单的数学和代数方程(例如等式1和eq.2)来得出兆头位置是可行的。这些计算基于地标和特定穴位位置之间的相对距离和角度。
平流层紫外线成像天文台演示器 (STUDIO) 是一个气球载平台和任务,携带 0.5 米孔径望远镜上的成像微通道板 (MCP) 探测器。STUDIO 目前计划在 2022 年夏季在瑞典 Esrange 上空飞行。有关紫外线 (UV) 探测器的详细信息,请参阅 Conti 等人对本次研讨会的贡献。1 该任务的科学目标是调查银河系平面内的变热致密恒星和耀斑 M 矮星。同时,该任务还充当了多功能和可扩展天文气球平台以及上述 MCP 仪器的演示器。吊舱的设计允许使用不同的仪器或望远镜。此外,它还设计用于执行多次、更长时间的飞行,这是欧洲平流层气球观测站 (ESBO) 计划设想的。
研究了相对论重离子碰撞中产生的带电粒子定向流的起源。将三种不同的能量密度分布初始条件Boz ˙ek-Wyskiel,CCNU和Shen-Alzhrani耦合到(3+1)维粘性流体动力学模型CLVisc中,系统地比较了它们对各向异性介质几何形状,压力梯度和径向流发展的影响。通过与RHIC和LHC的实验数据进行比较,我们发现定向流对撞击参数和时空快速度所跨越平面内初始介质剖面的倾斜度提供了独特的约束。在中等快速度内,逆时针倾斜被证明是后向/前向快速度下沿撞击参数(x)方向的压力梯度产生正/负力的关键来源,这导致介质流速的x分量相对于快速度呈现负斜率,最终形成带电粒子定向流的相同特征。
尽管其重要性,但迄今为止缺乏散装H-BN热导率的复杂理论研究。在这项研究中,我们使用第一原理预测和玻尔兹曼传输方程在大量H-BN晶体中进行了热导率。我们考虑三个声子(3PH)散射,四弹子(4PH)散射和声子重归于。对于室温下的平面内和平面外向,我们的预测热导率分别为363和4.88 w/(m k)。进一步的分析表明,4PH散射降低了导热率,而声子重质化会削弱声子非谐度并增加导热率。最终,平面和非平面外导导率分别显示出有趣的t 0.627和t 0.568依赖关系,与传统1/t关系远离偏差。
图 1. (a) 单层 (1L) MoSe 2 和 ReS 2 晶体结构。上图显示晶体结构的侧视图,下图显示晶体结构的顶视图。侧视图显示了这些层状材料上偶极子平面内取向的示意图。(b) 样品 1 (S1) 的 ReS 2 -MoSe 2 异质结构的光学图像。插图是样品侧视图的示意图。(c) MoSe 2 、ReS 2 和 HS 区域的拉曼光谱。HS 拉曼光谱由来自各个 1L 区域的不同振动模式组成。(d) 在透明蓝宝石基板上制作的类似异质结构的三个不同区域的吸收光谱数据(样品 2,S2)。MoSe 2 A 和 B 激子峰清晰可见,ReS 2 较低能量吸收峰用箭头标记。HS 光谱由两个 1L 区域的峰组成。