T 1 态。对于三重态,CCSD(T) 和 CASSCF 的结果大致相同,CCSD 的结果要差得多(图 S1b)。在分而治之的 q-UCCSD 方法中加入自旋翻转似乎是必不可少的,这导致垂直激发能量相对于 CASSCF 提高了约 1.2 eV。由于三重态的 HF 参考是 |11 20>(平面外三重态,平面内单重态),因此自旋翻转允许的 q-UCCSD 的优越性能的一个可能解释是它可以访问 |20 11> 配置(平面外单重态,平面内三重态),这对整体波函数有重要贡献(参见正文中的图 4a)。特别值得注意的是,带有自旋翻转的 q-UCCSD 方法找到了与 CASSCF 相同的最小值,并且总体上比 CCSD 产生了更好的结果。由于起点不佳,零 BLA 几何仍然很困难,尽管这种电子状态比 S0(一个 π 系统中四个近简并自旋轨道中的两个电子)的病态性要小。
图2在室温下(t = 300k),在正骨catio 3中(110)型DWS的结构和极性特性。(a)(110)dw的几何图形和在catio 3的正栓相中的几何学和方向的草图。(b)是由两个平行DWs组成的三明治模型,具有反平行DW极向量(绿色箭头)。DW内部的铁弹性双角和最大极化为C.A.0.52和2.4c/cm -2。插图(b)是通过透射电子显微镜(TEM)获得的DW内部的极向量[16]。X-Y,X-Z和Y-Z(双壁平面)平面内DW极化的局部细节显示在(C-D),(E-F)和(G-H)中。绿色和红色箭头是与图相对应的奇数甚至层的极性向量。1(d)。小极化倾斜存在于X-Y和X-Z平面内,而在双壁(Y-Z)内发现了相对较大的倾斜度。由于全球倒置中心对称性的保护,附近双壁的总体极化向量取消了。极性向量箭头被放大150倍以进行澄清。
15.补充说明由船舶结构委员会赞助。由其成员机构 16 共同资助。摘要 最近的大型铝高速船已经利用定制挤压件有效地建造大型扁平结构,包括内部甲板、湿甲板和侧壳部件。在本报告中,研究了设计和优化此类挤压件以尽量减少结构重量的一般方法。回顾了铝板和面板在平面内和平面外载荷下的强度方法,并将其与公开文献中发表的可用实验测试数据进行了比较。对于铝板和面板的平面内抗压强度,通常发现良好的一致性。然而,目前用于评估板材部件上的平面外载荷以及在组合载荷下作用的板材和面板的最先进的方法并不那么先进。建议在这些领域开展进一步研究。开发了一种使用遗传算法的多目标优化器;该优化器旨在快速生成帕累托边界,将各种强度水平的最小重量设计联系起来。开发了一种工程方法,用于估计平面内和平面外载荷组合下的任意挤压件的强度,并将其链接到优化器以创建完整的设计方法。该方法用于为三种不同类型的挤压面板(板和加强筋组合、夹层面板和帽形加强面板)开发主车辆甲板和公称高速船上强度甲板位置的面板的帕累托边界。最后,提出了结论和未来研究的建议。总体而言,这三种类型的面板在各种强度范围内都表现良好,但在某些应用中,夹层面板比其他两种面板略重。这种工程强度估计方法和多目标遗传算法优化方法的结合已被证明对于此类挤压件的设计非常实用,在标准台式电脑上,完整帕累托前沿的生成时间仅为几分钟。17.关键词 铝、挤压件、屈曲、极限强度、优化、遗传算法。
磷烯是黑磷的单层,是一种二维材料,在布里渊区缺乏多杂志结构,并且具有可忽略的旋转轨道耦合。这使其成为独立于山谷或旋转大厅效应的轨道厅效应的有前途的候选人。为模型磷烯,我们利用了一种密度功能理论的紧密结合哈密顿量,该密集结合哈密顿量是通过假性轨道轨道投射方法构建的。为此,我们使用新实施的内部基础的Paoflow代码,该代码提供了对磷烯传导带的相当好的描述。通过采用线性响应理论,我们表明磷烯在轨道霍尔电导率中表现出相当的轨道霍尔效应,对轨道霍尔电导率有强各向异性,用于平面外轨道角度动量成分。电导率的大小和符号取决于施加的电场的平面内方向。这些独特的特征使能够明确地观察该材料中的轨道大厅效应。还探索了应变和垂直施加的电场对磷酸轨道霍尔响应的影响。我们表明,在其导电状态下,垂直于磷酸层的补充电场可产生诱导的平面内轨道磁化强度。
摘要 — 准确的新生儿脑部 MRI 分割对于研究脑部生长模式和追踪神经发育障碍的进展非常有价值。然而,使用基于强度的方法来分割新生儿脑结构是一项具有挑战性的任务,因为固有的髓鞘形成过程导致脑区之间的对比度差异很小。尽管卷积神经网络提供了以强度无关的方式分割脑结构的潜力,但它们缺乏分割所必需的平面内长距离依赖性。为了解决这个问题,我们提出了一种新颖的 Transformer 加权网络 (TW-Net) 来整合平面内长距离依赖信息。TW-Net 采用传统的编码器-解码器架构,中间有一个 Transformer 模块。Transformer 模块使用旋转和翻转层来更好地计算切片中两个斑块之间的相似性,以利用脑结构内相似的几何和纹理特征模式。此外,还引入了深度监督模块和挤压和激励块来整合脑结构的边界信息。与最先进的深度学习算法相比,TW-Net 在两个独立的公共数据集上 2D 和 2.5D 配置的多标签任务中表现优于这些方法,表明 TW-Net 是一种很有前途的新生儿脑部 MRI 分割方法。
高纵横比金属纳米结构通常用于广泛的应用,例如电子计算结构和传感。然而,这些结构中的自热和高温对现代电子设备的可靠性和时钟频率都造成了重大瓶颈。任何显著的能源效率和速度进步都需要纳米结构金属中基本的和可调的热传输机制。在这项工作中,时域热反射用于揭示外延生长的金属 Ir(001) 中介于 Al 和 MgO(001) 之间的跨平面准弹道传输。对于 25.5–133.0 nm 薄膜,热导率范围分别约为 65(96 平面内)至 119(122 平面内)W m − 1 K − 1。此外,外延生长所提供的低缺陷被怀疑可以观察到具有传统电子介导热传输的 20 nm 以下金属中的电子-声子耦合效应。通过结合电热测量和现象学建模,揭示了不同厚度的三种跨平面热传导模式之间的转变及其相互作用:电子主导、声子主导和电子-声子能量转换主导。结果证实了纳米结构金属中未探索的热传输模式,其见解可用于为大量现代微电子设备和传感结构开发电热解决方案。
GRAPPA 是平面内加速因子;GRAPPA 为 2 时,扫描时间将减少近一半。多波段因子 (SMA) 是切片加速因子;SMA 为 4 时,扫描时间将减少近四分之一。部分傅立叶沿相位编码方向削减一些 k 空间线以加速采集;如果使用,大多数研究使用 6/8 因子。如果需要,我们可以同时应用所有这些加速技术,但会牺牲图像质量。大多数研究使用 GRAPPA 为 2 和 SMA 为 2 或 4。一些研究人员只使用 SMA 为 8。使用 SMA,一些研究人员还保存参考扫描以供后期处理。
学习结果 - 确定安全应用超声所需的参数。- 确定标准化患者的物理原理,人工制品和图像优化的步骤。- 使用超声模拟器进行超声引导的平面内和平面外针的放置,用于血管访问和程序应用。- 识别标准化患者正常外周静脉和动脉的超声表现。- 对人体模型进行超声引导性血管通道。- 在将超声整合到插管中时了解无菌技术。
b“ Mxene具有通用公式M 1.33 CT Z的MXENE于2017年首次报道。[6]这些mxenes来自平面内排序的第四纪最大相位,其公式为(m'1.33 m \ xe2 \ x80 \ x9c 0.66)alc。蚀刻后,蚀刻了Al层和少数过渡金属M \ Xe2 \ X80 \ X9D,将其留下了平面内有序的分区的2D纸。By now MXenes are well recognized as performing well as negative electrodes in AASCs, [5a\xe2\x80\x93c,7] because of their high conductivity, excellent hydrophilicity, great tolerance to accom- modate various ions and negative operation potential window in three electrode configurations (e.g., to 1.6 V vs. Ag/AgCl in 21 M KCH 3 COO [8] ).最近,由于其高密度和无效材料的避免,诸如粘合剂,导电剂等,更多的工作集中在基于MXENE的自由层膜上,以实现SCS中的高体积电容(C V)。[9]在先前的报告中,硫酸(H 2 SO 4)一直是选择的电解质。细胞通常达到C S> 300 F G 1或> 1500 F CM 3的高值。[5d,10]但是,与中性水解物相比,H 2 SO 4既安全也不是绿色。进一步的问题是,i)风险“