摘要:近年来,减载技术在运输机上得到越来越广泛的应用。对于已服役的飞机,减载可以延长疲劳寿命,或实现微小的配置变化。如果在飞机设计过程中考虑减载,则可以减轻飞机的结构质量。本文研究了各种机动和阵风减载算法以及未来潜在的飞行操作、湍流预报和材料科学技术,并评估了可以实现的质量减轻。为此,以一架远程运输机为参考,考虑的载荷工况为1-cos阵风、机动和准定常着陆。基于载荷,优化了升力面的复合结构,同时保持次级质量和机翼平面形状不变。实施所有技术后,可实现翼盒质量减轻26.5%或运行空重的4.4%。
摘要:近年来,减载技术在运输机上得到越来越广泛的应用。对于已服役的飞机,减载可以延长疲劳寿命,或实现微小的配置变化。如果在飞机设计过程中考虑减载,则可以减轻飞机的结构质量。本文研究了各种机动和阵风减载算法以及未来潜在的飞行操作、湍流预测和材料科学技术,并评估了可以实现的质量减轻。以一架远程运输机为参考,考虑的载荷工况条件为1-cos阵风、机动和准定常着陆。基于载荷,优化了升力面的复合结构,同时保持次级质量以及机翼平面形状不变。实施所有技术后,翼盒重量可减少 26.5%,或减少空载重量的 4.4%。
由于隐形技术和现代导弹的发展,未来空战的空战战术将发生重大变化。快速目视交战可以通过高攻角和跨音速下的快速瞬时机动来决定,而射击优势则通过快速导弹交换来确定。在更高的跨音速下,必须掌握受控涡流,以便控制所有三个轴的运动。飞机的平面形状、机翼后掠角和前缘类型必须在整个飞行包线内为这些复杂流动提供共同利益,同时还要考虑特征。通常在侧滑条件下会达到受控飞行极限。在这里,不对称涡流不稳定性会导致不稳定的滚动力矩和不利的偏航。为了突破这些极限,必须深入了解涡流分离、它们的相互作用和分解。设计气动特性的探测需要借助现代流动模拟工具,并在适当的物理理解的基础上进行验证。
美国宇航局艾姆斯研究中心于 20 世纪 90 年代初对超音速商用客运斜全翼概念进行了设计研究。这项研究的参与者包括美国宇航局艾姆斯研究中心在斜翼设计方面拥有长期专业知识的工作人员,以及来自西雅图波音商用飞机公司和加州长滩道格拉斯飞机公司的工程师,以及斯坦福大学的研究团队。行业合作的目的是确保研究中包含现实世界的设计约束,并获得行业设计专业知识。斯坦福大学的团队建造并试飞了一架 17 英尺跨度的斜全翼无人机,展示了 3% 负静态稳定性的飞行。设计研究最终产生了两种机翼设计,称为 OAW-3 和 DAC-1。OAW-3 机翼由 NASA Ames 团队设计,代表了基于配置约束和任务性能指标的高度优化设计。DAC-1 机翼由道格拉斯飞机公司的团队设计。它是一种经典的椭圆形平面形状,具有高度的气动形状优化,但设计并未根据整体任务性能指标进行优化。虽然两个机翼都在 9 x 7 超音速风洞中进行了测试,但只有 OAW-3 机翼拥有完整的控制面和发动机舱。本报告中描述的风洞数据仅在 NASA OAW-3 配置上获得。
无人驾驶飞行器 (UAV) 的固有特性使其能够开发新颖和创新的设计,通常采用最先进的技术,而无需处理与大型飞行器开发相关的许多限制,特别是在确保上述飞行器获得认证方面。此外,无人机的开发成本明显较低,微型飞行器 (MAV) 尤其如此。因此,在过去几年中,国立航空航天技术研究所“Esteban Terradas” (INTA) 一直在开发一种全新的仿生无人机,该无人机基于变形机翼技术,采用 Zimmerman 平面形状,使用宏纤维复合材料 (MFC) 执行器。由于该项目仍处于早期开发阶段,确保无人机的稳定性至关重要,尤其是考虑到其几何配置。为了实现上述稳定性,选择了 T 型尾翼配置。虽然已经通过稳定性增强系统 (SAS) 和基于 PID 的俯仰自动驾驶仪对仿生变形无人机的基本配置进行了初步纵向稳定性分析,但使用 MFC 执行器修改机翼对纵向稳定性的影响仍有待评估。因此,在目前的工作中,将对具有修改配置的仿生变形无人机的纵向稳定性进行分析,并将其与基本配置的纵向稳定性进行比较。还将评估修改 PID 系数是否有益。
美国宇航局艾姆斯研究中心在 20 世纪 90 年代初对超音速商用客运斜翼全翼概念进行了设计研究。这项研究的参与者包括美国宇航局艾姆斯研究中心在斜翼设计方面拥有丰富经验的工作人员,以及来自西雅图波音商用飞机公司和加州长滩道格拉斯飞机公司的工程师,以及斯坦福大学的研究团队。行业合作的目的是确保将现实世界的设计约束纳入研究,并获得行业设计专业知识。斯坦福大学的团队建造并试飞了一架 17 英尺跨度的斜翼全翼无人机,展示了 3% 负静态稳定性的飞行。设计研究最终产生了两种机翼设计,称为 OAW-3 和 DAC-1。OAW-3 机翼由美国宇航局艾姆斯研究中心的团队设计,代表了基于配置约束和任务性能指标的高度优化设计。DAC-1 机翼由道格拉斯飞机公司的团队设计。它是一种经典的椭圆形平面形状,具有高度的气动形状优化,但设计并未根据整体任务性能指标进行优化。虽然两个机翼都在 9 x 7 超音速风洞中进行了测试,但只有 OAW-3 机翼拥有完整的控制面和发动机舱。本报告中描述的风洞数据仅在 NASA OAW-3 配置上获得。
本研究的动力来自两个因素:学生数学计算思维 (CT) 技能较差以及数字时代信息技术的快速发展。通过使用由 Unity 3D 提供支持的基于增强现实 (AR) 的教育内容,该内容可用于基于初始数学能力 (IMA) 的在线和离线学习,本研究明确旨在提高学生的数学计算思维能力。增强现实是使用实时显示在真实环境中的三维虚拟对象。学生的初始数学能力是数学学习成功的决定性变量之一,每个学生都有独特的学习风格。在这种情况下,学生的初始数学能力是学生在参与即将提供的学习之前所具备的能力。本研究侧重于评估决定学生在老师指导下学习的准备情况的基本数学技能水平。在 2022-2023 学年期间,从北干巴鲁一所公立初中的七年级每个班级随机抽取了 30 名学生参加这项准实验研究。本研究的主题是平面形状,特别是三角形和四边形。数据收集方法包括两种方法:(1)进行测试以评估数学计算思维能力和(2)进行访谈。访谈和记录数据以描述性方式进行分析,而统计测试则用于分析测试结果。结果表明,与传统学习方法相比,利用 Unity 3D 增强现实媒体来提高学生的数学计算思维能力取得了更好的效果,尤其是对于初始数学能力水平较低的学生。