本研究探讨了低密度状态下穿透位错密度 (TDD) 对集成在 Si(001) 上的 Si 0.06 Ge 0.94 异质结构中垂直传输的影响。使用无意掺杂的 Si 0.06 Ge 0.94 层可以研究生长穿透位错 (TD) 的影响,而不会与加工引起的缺陷(例如源于掺杂剂注入)相互作用。所研究的异质层虽然在成分、应变弛豫度和厚度上相同,但 TDD 有三个不同的值:3×10 6、9×10 6 和 2×10 7 cm -2 。电流-电压测量表明漏电流与 TDD 不是线性比例。漏电流的温度依赖性表明场增强载流子生成对电流传输有很大贡献,其中通过 TD 诱导的缺陷态的陷阱辅助隧穿被确定为室温下的主要传输机制。在较低温度和高电场下,直接带间隧穿而不与缺陷能级直接相互作用成为主要的传输类型。在较高温度(>100 °C)下观察到与 Shockley-Read-Hall (SRH) 产生的中带隙陷阱发射相关的漏电流。在这里,我们发现材料中来自 SRH 的贡献减少,TDD 最小(3×10 6 cm -2 ),我们将其归因于 TD 应变场中捕获的点缺陷簇减少。
自从人类制造出第一批敲打工具以来,脆性材料中裂纹扩展的控制就一直是技术发展的一个方向。如今,各种各样的应用都依赖于裂纹扩展控制,从减轻损坏(例如玻璃屏幕或挡风玻璃受到撞击)到利用裂纹实现大距离整齐切割的工业过程。然而,实时研究裂纹是一项具有挑战性的任务,因为裂纹在通常不透明的材料中可以扩展至几公里/秒。在这里,我们报告了对沿硅单晶 (001) 平面以高达 2.5 公里/秒的速度扩展的裂纹的现场研究,使用 X 射线衍射兆赫成像和强时间结构同步辐射。所研究的系统基于 Smart Cut ™ 工艺,其中材料(通常是 Si)中的埋层被微裂纹削弱,然后用于在平行于表面的平面上以最小偏差(10 - 9 米)驱动宏观裂纹(10 - 1 米)。我们在此报告的结果首次直接证实了裂纹前沿的形状不受微裂纹分布的影响,这曾是以前基于断裂后结果的研究的假设。我们进一步测量了厘米宽视野内的瞬时裂纹速度,这以前只能从稀疏点测量中推断出来,并证明了 X 射线束局部加热的影响。最后,我们还观察了分离晶圆部件的裂纹后运动,这可以用气动和弹性来解释。因此,这项研究提供了对晶体材料中受控断裂扩展的全面了解,为超快速应变场扩展的原位测量铺平了道路。
动态核极化 (DNP) 在自旋电子学和量子信息处理中被公认为具有重要意义。DNP 可产生高核自旋极化,这不仅可以通过产生 Overhauser 场 (OHF) 来延长电子自旋寿命,而且还为探索核自旋量子比特提供了灵感。在应变量子点结构 (QDS) 中,核自旋通过其四极矩耦合到应变场。研究表明,这种核四极相互作用 (NQI) 可用于实现可观的 DNP 和电子自旋极化。在这里,我们发现了一系列横向排列的 (In,Ga)As QDS 的磁光异常,这些 QDS 是由这些纳米结构中的 NQI 和 DNP 引起的。我们发现对称性降低的 QDS 中 NQI 的主轴明显偏离生长方向,导致 OHF 倾斜超过 37°。针对晶体取向探测了由此产生的 OHF 横向分量,并分析了其对 DNP 和整体自旋失相的影响。我们表明,激子的高对称电子约束势不能保证同一纳米物体内原子核的高对称 NQI,因此需要对电子约束势和核自旋池的对称性进行相关优化。我们的研究结果强调了斜 NQI 在电子自旋退相干和去极化中的作用,而这一作用迄今为止在很大程度上被忽视了。因此,这项工作揭示了设计规则,用于设计 QDS 的电子和自旋景观,从而提高 DNP 在自旋电子学和量子计算中的应用性能。
X 射线相衬成像 (X-PCI) 与先进光子源 (APS) 的动态加载平台相结合,用于提供通过增材制造 (AM) 制备的高固体负载聚合物复合材料的时间和空间分辨的冲击压缩响应。增材制造(3D 打印)提供的几何灵活性和多功能性开辟了控制材料性能并通过结构设计在功能上定制材料以适应特定应用的新途径。增材制造的材料可以具有广泛的结构特性,具有长度尺度的层次和工艺固有的异质性,例如不均匀的成分分布、界面、孔隙和裂纹。其中许多特征难以精确控制或避免。因此,了解微观和中观尺度结构属性和异质性如何影响受到冲击压缩载荷的聚合物复合材料的性能非常重要。我们分析了在 AFRL-Eglin 制造的增材制造聚合物复合材料(74vol% 颗粒在紫外线引发的甲基丙烯酸酯粘合剂中)的冲击压缩响应。单轴应变板撞击实验以不同的速度进行,撞击沿相对于打印图案的不同方向进行。时间分辨 X 射线相位对比成像 (X-PCI) 用作材料诊断的内部。通过以 ~154 纳秒时间分辨率和 2.45 微米空间分辨率的 X-PCI 跟踪观察到的冲击前沿的特征,我们能够确定冲击速度与粒子速度的状态方程 (EOS)。体积平均粒子速度也是从光多普勒速度 (PDV) 干涉测量捕获的表面运动中获得的,这表明与从 X-PCI 图像获得的粒子速度几乎一一相关。沿不同冲击方向的冲击压缩响应显示出线性冲击和粒子速度关系,没有明显的方向依赖性,这可能是由于实验中使用的 2 x 3 x 6 毫米样品的整体尺度上定向孔隙率可以忽略不计。样品中的内部变形场也通过对 X-PCI 图像进行数字图像相关 (DIC) 分析进行量化,从而首次评估了冲击压缩载荷下聚合物复合材料内部的平均应变场。总体结果证明了 X 射线 PCI 在探测与异质材料冲击压缩相关的“材料内”状态方程和内部应变方面的实用性和有效性。
59. 招聘广告: - 冶金系有色冶金教研室 Christian Doppler 铝合金变形-沉淀相互作用实验室招聘一名全职项目研究员(男/女/其他) - 参考编号:2411WPF Montanuniversität Leoben 是一所现代化的教学和研究机构,为科学和非科学领域的职业提供优越的条件。冶金系有色冶金教研室 Christian Doppler 铝合金变形-沉淀相互作用实验室招聘一名全职项目研究员(男/女/其他) - 从 2025-06-01 开始,雇佣合同期限为三年。根据 Uni-KV 的工资组 B1,每月最低工资不含增值税。费用:每周 40 小时(每年 14 小时)3,578.80 欧元,实际分类根据之前的相关经验。这项工作包括在现有的设备齐全的 TEM 中集成扫描进动电子衍射,并建立数据分析程序,通过评估纳米级的详细取向和相位分析,增强我们对铝合金进行高级研究的能力。详细的相位和应变场分析将提供关键见解,了解不同工艺条件下塑性变形时位错和沉淀物之间的复杂关系。与一家铝制品制造商合作,特别强调特殊和优质产品以及可持续工艺,这项研究旨在解决二次铝的日益整合,特别是在以性能为导向的行业。我们提供的内容:• 使用最先进的研究设施,包括先进的分析设备,如透射电子显微镜。• 创新和支持性的环境,由充满活力的研究小组中的技术开放、好奇心、开放的沟通和内在动机定义。 • 有机会进行国际合作并参与全球研讨会或会议,促进学术和专业网络的扩展。 • 为个人和专业发展提供结构化的环境,通过先进材料研究和实验技术的实践经验提供成长机会。 • 与行业合作伙伴合作,确保为可持续冶金的进步做出贡献。 我们正在寻找符合以下条件的候选人: • 准备好接受和尝试新技术和先进的分析技术,以突破材料研究的界限。 • 内在地受好奇心驱使,并致力于产生有影响力的研究成果。 • 在实践工作和理论分析方面都致力于高标准。 • 坚韧不拔、适应性强,在鼓励从成功和挑战中学习的环境中茁壮成长,为个人和职业发展提供强有力的支持。• 愿意与由年轻研究人员和经验丰富的导师组成的多元化团队合作,为重视开放沟通和相互支持的不断壮大的团队做出贡献。
嵌入纳米线波导的外延量子点 (QDs) 是单个光子和纠缠光子的理想来源,因为这些设备可以实现高收集效率和发射线纯度 1 – 4 。此外,这种架构有可能通过在纳米线内串联耦合量子点来形成量子信息处理器的构建块。具有清晰分子键合和反键合状态特征的量子点分子已被证明,其中可利用量子限制斯塔克效应 5、6 调整载流子群。这些光学活性量子点也是量子网络单元非常有希望的候选者,因为它们可以将光子量子比特中编码的量子信息传输到固态量子比特并在耦合的量子点电路中处理该信息 7 – 9 。控制点之间的隧道耦合是适当调整和执行量子比特之间量子门所需的关键特性。例如,在静电定义的量子点中,可通过为此目的设计的电门实现点间隧道耦合,并且已实现多达 9 个量子比特的线性阵列 10 。在外延量子点中,隧道耦合由量子点之间的距离决定,该距离在生长过程之后无法改变 7 、 11 – 13 。由于原子级外延生长的不确定性,这会产生可重复性问题。克服这些问题的尝试包括旨在引入受控结构变化的措施,例如激光诱导混合 14 、将发射器放置在光子腔中 13 或调整点附近的应变场 15 。这些过程可提高量子点发射器的均匀性,但是它们无法实现时间相关的调整和可寻址性。为了实现这一点,通过金属栅极将外部电场施加到量子点上,从而控制电荷状态 16 、通过斯塔克位移 5 进行光谱调谐以及通过四极场 17 控制激子精细结构。此外,最近在外延量子点中进行的电子传输实验已经证明了隧道耦合的电调谐 18 – 20 。然而,这些方法需要复杂的设备设计和工程。在本信中,我们通过施加垂直于点堆叠方向的磁场来演示点间耦合的可调谐性。我们首先对 InP 纳米线中的 InAsP 双量子点 (DQD) 进行光学磁谱分析,并确定了逆幂律,该定律控制每个点的 s 壳层发射之间的能量差,该能量差是点间距离的函数。发射能量受点成分和应变差异的影响,而点之间的耦合则在生长阶段由分隔它们的屏障厚度决定。但是,我们将证明我们可以调整对于特定状态,通过施加平行于量子点平面的磁场(即 Voigt 几何),发射能量差可在约 1 meV 的范围内按需变化。正如我们将要展示的,如果没有点之间的量子力学耦合,这种能量转移就不可能实现,我们将此结果解释为点间隧道耦合的磁场调谐是由于经典洛伦兹力的量子类似物而发生的。
半导体中单个磁性原子的自旋光子接口 总体范围:半导体中的单个自旋对量子信息技术的发展大有裨益。由于其期待已久的相干时间,单个缺陷上的局部自旋是量子信息存储的首选介质,而半导体平台提供了有趣的集成前景。对于充当量子节点的局部自旋的长距离耦合,需要自旋光子接口。这些接口通常基于特定的光学选择规则。对于非光学活性磁性杂质,可以通过它们与半导体载体的交换相互作用实现光学接口。这已在插入半导体量子点 (QD) 的过渡金属元素 (Mn、Cr、Co、Fe 等) 中得到证实。这些磁性元素提供了广泛的局部电子自旋、核自旋和轨道矩选择。 研究主题和可用设施:我们旨在利用 QD 的光学特性来探测和控制嵌入式磁性原子的耦合电子和核自旋的相干动力学。我们将结合射频 (RF) 激发和共振荧光,对单个自旋进行相干控制和探测。实习将专注于开发共振荧光实验,以检测无应变 QD 中 Mn 原子耦合电子和核自旋的磁共振。我们还将开始模拟微柱腔中共振驱动磁性 QD 的光信号自旋诱导波动,这是未来正在开发的自旋光子器件尺寸确定的必要步骤。我们将分析连续共振光学读出下的量子动力学,以展示量子芝诺效应如何有助于增加此类系统中量子信息的存储时间。与我们的合作伙伴合作,我们还将研究具有较大自旋应变耦合的磁性离子 (Cr 2+ 、Co 2+ ),这些离子可以通过表面声波的应变场进行相干控制。我们将致力于模拟局部应变分布对点磁光光谱的影响,以估计它们的自旋应变耦合。实验将在配备磁光低温恒温器(1.5 K、9T/2T 磁体、光学和射频接入)、可调单模和脉冲(ps)激光器(用于共振光激发)和高分辨率光谱仪(用于检测)的微型光谱设备上进行。参考文献:L. Besombes 等人,Phys. Rev. B 107, 235305 (2023) ;V. Tiwari 等人,Phys. Rev. B 106, 045308 (2022) ;V. Tiwari 等人,Phys. Rev. B Letter 104, L041301 (2021) 。可能的合作和交流:这项工作将在 NanoPhysique et Semi-Conducteurs 小组(NPSC,法国国家科学研究院/尼尔研究所和 CEA/IRIG 与筑波大学和华沙大学合作,对部分样品进行了培养。 是否可继续攻读博士学位:是 所需技能:硕士 2(或同等学历),具备固体物理学(电、光、磁特性)、量子力学、光学、光物质相互作用方面的丰富知识。 开始日期:2024 年 3 月(灵活) 联系人:L. Besombes,尼尔研究所,电话:0456387158,电子邮件:lucien.besombes@neel.cnrs.fr 更多信息:http://neel.cnrs.fr