X 射线相衬成像 (X-PCI) 与先进光子源 (APS) 的动态加载平台相结合,用于提供通过增材制造 (AM) 制备的高固体负载聚合物复合材料的时间和空间分辨的冲击压缩响应。增材制造(3D 打印)提供的几何灵活性和多功能性开辟了控制材料性能并通过结构设计在功能上定制材料以适应特定应用的新途径。增材制造的材料可以具有广泛的结构特性,具有长度尺度的层次和工艺固有的异质性,例如不均匀的成分分布、界面、孔隙和裂纹。其中许多特征难以精确控制或避免。因此,了解微观和中观尺度结构属性和异质性如何影响受到冲击压缩载荷的聚合物复合材料的性能非常重要。我们分析了在 AFRL-Eglin 制造的增材制造聚合物复合材料(74vol% 颗粒在紫外线引发的甲基丙烯酸酯粘合剂中)的冲击压缩响应。单轴应变板撞击实验以不同的速度进行,撞击沿相对于打印图案的不同方向进行。时间分辨 X 射线相位对比成像 (X-PCI) 用作材料诊断的内部。通过以 ~154 纳秒时间分辨率和 2.45 微米空间分辨率的 X-PCI 跟踪观察到的冲击前沿的特征,我们能够确定冲击速度与粒子速度的状态方程 (EOS)。体积平均粒子速度也是从光多普勒速度 (PDV) 干涉测量捕获的表面运动中获得的,这表明与从 X-PCI 图像获得的粒子速度几乎一一相关。沿不同冲击方向的冲击压缩响应显示出线性冲击和粒子速度关系,没有明显的方向依赖性,这可能是由于实验中使用的 2 x 3 x 6 毫米样品的整体尺度上定向孔隙率可以忽略不计。样品中的内部变形场也通过对 X-PCI 图像进行数字图像相关 (DIC) 分析进行量化,从而首次评估了冲击压缩载荷下聚合物复合材料内部的平均应变场。总体结果证明了 X 射线 PCI 在探测与异质材料冲击压缩相关的“材料内”状态方程和内部应变方面的实用性和有效性。
主要关键词