电致变色 (Electrochromic, EC) 是材料的光学属 性 ( 透过率、反射率或吸收率 ) 在外加电场作用下发 生稳定、可逆颜色变化的现象 [1] 。 1961 年 , 美国芝 加哥大学 Platt [2] 提出了 “ 电致变色 ” 的概念。到 1969 年 , 美国科学家 Deb [3] 首次报道了非晶态三氧化钨 (Tungsten Trioxide, WO 3 ) 的电致变色效应。随后 , 人 们开始对电致变色材料进行了广泛而深入的研究。 20 世纪 80 年代 , “ 智能窗 ” 概念提出后 [4] , 由于节能环 保、智能可控等优点 , 形成一波新的电致变色技术研究 热点 [5-10] 。随着研究的深入 , 特别是纳米技术的快速 发展 , 器件性能得到了大幅的提升 ( 图 1(a)) [11-13] , 电 致变色器件 (Electrochromic Device, ECD) 也逐渐实现 了产业化应用。 根据材料种类不同 , 电致变色材料可大致分为 有机电致变色材料和无机电致变色材料。相较而言 , 有机电致变色材料具有变色速度快、柔性好、可加 工性强和颜色变化丰富等优点 , 主要包括导电高分 子、紫罗精类小分子和金属有机螯合物等 [14] 。无机 电致变色材料具有光学对比度高、光学记忆性好和 环境稳定性高等优点 , 主要包括过渡金属氧化物以 及普鲁士蓝等 [15] 。目前 , 电致变色器件的结构主要 为类三明治结构 , 由两个透明导电层中间夹一层电 致变色活性层构成。根据电致变色材料种类不同 , 电致变色活性层可分为整体结构和分层结构。整体 结构是电致变色材料与电解质相互混合为一层 , 这 类结构主要针对紫罗精等小分子有机物。这类器件 在外加电场作用下 , 有机小分子扩散到电极表面或 以电解质中氧化还原剂为媒介发生氧化还原反应而 实现颜色变化 [16] 。分层结构是电致变色材料、电解 质和对电极 ( 或叫离子储存层 ) 依靠界面接触分层 ,
摘要:随着全球变暖和温室效应的加剧,全球对制冷的需求日益增加。但是,传统的制冷方法不仅消耗了很多能量,而且还会产生诸如Co 2和臭氧(O 3)之类的温室气体(O 3),这将导致温室效应的强化,从而导致恶性循环。迫切需要开发一种干净的冷却技术。被动的白天辐射冷却已被证明是一种有效的策略,是以辐射形式转移到冷外层空间的形式的有效策略,并实现冷却的目的而无需消耗能量或使用辅助设备。根据被动日间辐射冷却技术的原理,本文分析了白天辐射冷却膜和涂料的设计思想,并分析和阐述了辐射冷却材料的开发历史和最新研究进度。最后,结合当前在构建冷却和个人热管理方面的应用,该技术的未来开发方向已被验证。关键字:全球变暖;温室效应;白天辐射冷却;发展课程;建筑冷却;个人热管理
• 自主离网电源 • 减少对环境的影响和碳足迹 • 提供单相或三相配置 • 同步后可直接替代高达 70 kVA 或 70kVA+ 的柴油发电机 • 减少发电机运行时间和服务成本 • 降低噪音排放 • 标配远程能源管理 • 标配实时能源报告 • 自适应电源 • 所有装置均“可再生能源就绪”,可连接额外的太阳能光伏板和风力涡轮机 • 可选择同步多组
多功能半干式脑电图系列,具有 8/16/32/64 通道,可用于移动和无线脑电图监测。研究人员可以非常快速轻松地进行设置,用户也可以舒适自由地移动。半干式传感器(自来水湿度)遵循国际 10-10 和 10-20 系统,即使在最苛刻的记录环境下,也可以连续记录 6 小时以上,并且信号质量出色。
该项目介绍了多功能军事机器人的开发,这是一种多功能机器人系统,旨在执行各种防御和安全任务。机器人的架构结合了移动性,高级传感器,健壮的控制系统和安全的通信接口,使其适应了各种操作方案。该项目的目标是增强军事力量的能力,降低人类人员的风险并满足各种任务要求。设计过程始于特定目标和要求的定义,从而导致概念设计,其中包括移动性,传感器放置和通信功能的考虑。组件和技术是仔细选择的,以确保机器人执行监视,侦察和炸弹处置等任务的能力。软件开发的重点是导航算法,避免障碍物和安全措施,包括加密。机器人组装,严格测试并校准,以确保准确的传感器读数和可靠的操作。安全协议是为人类操作员和旁观者建立的,而用户友好的遥控界面旨在促进操作。该项目强调对人员的培训和创建部署程序。在实际情况下进行操作测试是为了评估机器人的性能,并持续承诺基于用户和运营商的反馈来进行完善和增强。该项目还涉及遵守与使用军事机器人有关的国际法律和道德考虑。