抽象目的是肥胖和高血压尚不清楚高敏性C反应蛋白(HS-CRP)和入射糖尿病之间观察到的关联的程度。这项研究旨在调查HS-CRP与挪威一般人群样本中糖尿病的关联。设计了一项研究队列研究,该研究使用Tromsø研究的两项基于人群的调查:第六次调查Tromsø6(2007-2008)作为基线和第七次调查Tromsø7(2015-2016)在随访中。设定挪威的特罗姆斯市,这个国家的老年人比例越来越高,超重,肥胖和高血压的流行率很高。参与者8067名没有糖尿病的男性和男性,年龄30-87岁,在基线Tromsø6时,他们随后也参加了Tromsø7。是由逻辑回归建模的,与基线HS-CRP相关联,分为三个刻度或连续性的风险因素,并将其分为c.高血压。 通过在完全调整的模型中添加相互作用项来评估性别,体重指数(BMI),高血压或腹部肥胖的相互作用。 结果7年后有320(4.0%)糖尿病病例。 没有证据表明HS-CRP与性别,高血压,BMI或腹部肥胖之间相互作用。 提出的HS-CRP的结论与挪威成人人群样本中的未来糖尿病发展有关。是由逻辑回归建模的,与基线HS-CRP相关联,分为三个刻度或连续性的风险因素,并将其分为c.高血压。通过在完全调整的模型中添加相互作用项来评估性别,体重指数(BMI),高血压或腹部肥胖的相互作用。结果7年后有320(4.0%)糖尿病病例。没有证据表明HS-CRP与性别,高血压,BMI或腹部肥胖之间相互作用。提出的HS-CRP的结论与挪威成人人群样本中的未来糖尿病发展有关。在包括肥胖和高血压在内的多变量调整后,最高HS-CRP三位一体3中的个体患糖尿病的几率高73%(OR 1.73; P = 0.004; 95%CI 1.20至2.49),而第三次较低的人比最低或每1.2%的人(或1.28)(或1.28)(或1.28; 1.28; 1.09至1.50)。肥胖或高血压不能完全解释CRP糖尿病的关联。
在二维反铁磁半导体 CrPS 4 上实现的晶体管表现出大的磁导,这是由于磁场引起的磁状态变化。电导和磁状态耦合的微观机制尚不清楚。我们通过分析决定晶体管行为的参数——载流子迁移率和阈值电压——随温度和磁场的变化来确定它。对于接近尼尔温度 TN 的温度 T ,磁导源于由于施加的磁场导致的迁移率增加,从而降低了自旋涨落引起的无序。当 T << TN 时,变化的是阈值电压,因此在固定栅极电压下增加场会增加积累的电子密度。该现象通过导带边缘偏移来解释,该偏移是通过从头算正确预测的。我们的结果表明,CrPS 4 的能带结构取决于其磁状态,并揭示了一种以前未被发现的磁导机制。
高通量技术为基因组学、转录组学、蛋白质组学、表型组学和代谢组学分析提供了广泛的组学数据集。这些进步伴随着不断发展的生物信息学工具,整合了组学相关数据,提供了有关植物分子系统及其功能的关键信息(Choi,2019 年)。这些技术显著推动了植物组学研究,研究基因功能、调控和适应性。此外,它们有助于恢复大量植物多样性,这对于遗传改良、粮食安全和保护工作至关重要(Kumar 等人,2021 年)。通过整合来自基因组学、转录组学、蛋白质组学和代谢组学的多层次生物数据,可以全面研究和洞察控制对非生物胁迫反应的分子方面。本研究主题集成了先进的高通量技术、多组学、生物信息学、系统生物学和人工智能,以探索植物对环境限制的压力和耐受性。它包括九篇原创研究文章,增强植物对干旱、寒冷、紫外线辐射、洪水和低氮胁迫等压力源的适应力。文章涵盖了重要的植物物种:水稻、马铃薯、卷心菜、甘蔗、杨树、南极苔藓(Pohlia nutans 和 Leptobryum pyriforme)和濒危植物物种 Myricaria laxi flora。此外,一篇综述探讨了基因组工程的最新进展以及 CRISPR-Cas9 介导的基因组编辑在可持续农业中的作用。本研究主题探索了各种尖端技术,以增强植物对环境挑战的适应力。这些包括转录组学、蛋白质组学、代谢组学和表型组学。Dwivedi 等人进行了首次研究,采用高通量表型组学参数来选择生殖阶段干旱胁迫 (RSDS)
摘要 心率变异性是情绪健康的一个强有力的生物标志物,与调节情绪调节和心率的共同大脑网络一致。虽然高心率振荡活动清楚地表明大脑调节系统健康,但增加这种振荡活动是否也能增强大脑功能?为了测试这种可能性,我们随机将 106 名年轻成年参与者分配到两种为期 5 周的干预措施之一,这些干预措施涉及每日生物反馈,要么增加心率振荡(Osc+ 条件),要么对心率振荡影响不大(Osc- 条件),并检查了休息期间和调节情绪期间对大脑活动的影响。虽然右侧杏仁核内侧前额叶皮层 (MPFC) 功能连接没有显著变化(我们的主要结果),但 Osc+ 干预增加了左侧杏仁核-MPFC 功能连接和情绪相关静息状态网络的功能连接。它还增加了情绪调节任务期间体感大脑区域活动的下调。Osc- 干预没有这些影响。在这个健康人群中,这两种情况对焦虑、抑郁或情绪的影响并无差异。这些发现表明,调节心率振荡活动会改变大脑中的情绪网络协调。
在大流行期间,DSHS实施了一个名为Pulsara的系统,医院可以自愿参与与患者转移需求有关的系统。PULSARA协助全州可用的床和患者。PULSARA使医院能够立即在整个州看到患者转移的请求,从而减少了医院的需求,以确定可以在哪里可以使用床的历史上需要通话。因为该系统的推出开始了,这是自愿参加PULSARA的大流行医院的中间,并且该州无法从系统的所有能力中受益。PULSARA已获得联邦Covid-19响应基金的资金,DSHS正在评估正在进行的策略,以准备和管理全州危机中的患者转学。
摘要:能源贫困,定义为无法获得可靠的电力,并且对传统生物质资源进行烹饪的依赖会影响超过十亿人。世界卫生组织估计,与疟疾,结核病和艾滋病毒/艾滋病相比,不具备的炉灶受到的家庭空气污染会导致更早的死亡。对能源需求的增加导致排放量的急剧增加。对可靠的电力和限制排放的需求推动了对弹性混合能源系统(RHESS)的研究,通过将风,太阳能和生物质能量与传统化石能量相结合,增加产量的效率和可靠性以及降低产生成本和发射成本和发射,从而提供了更清洁的能源。微电网已被证明是促进Rhess的一种有效手段,其中一些主要集中在降低电力发电的环境影响上。设计,实施和应用微电网所面临的技术挑战涉及进行摇篮到宽度的生命周期分析(LCA),以评估这些系统在不同的操作条件下的环境和经济绩效以评估弹性。开发了样本恒星,并用于证明在农村应用中的实现,该系统可以为加热,冷却,照明和泵送清洁水提供可靠的电力。模型和发现可以由全球其他地区面临类似挑战来利用。
创新的气候适应方法将技术和基于自然的解决方案相结合,可能比单独使用其中一种解决方案更强大、更全面、更具成本效益。在沿海和海洋环境中,这些解决方案包括极端事件预警系统、减少风暴潮和海平面上升影响的混合方法(例如在人工海堤旁恢复沿海植被)、投资基于自然的基础设施、减少有害捕捞活动的新技术、基于生态系统的海洋空间规划和连贯的海洋保护区网络以及沿海灾害测绘。然而,尽管沿海和岛屿社区迫切需要适应气候变化,但知识、能力和资金方面的差距和挑战阻碍了这些综合方法的广泛实施和主流化。
摘要:针对离网微电网中因负载需求波动引起直流母线电压浪涌的问题,提出一种基于混合储能系统的自适应能量优化方法来维持直流母线电压的稳定。自适应能量优化方法包括三部分:均值滤波算法,提取需求负载中的波动功率;超级电容端电压控制,保持超级电容端电压接近参考值;电池组平衡控制,调节充放电使电池组荷电状态平衡。该方法在需求负载波动时,经低通滤波器提取波动功率后,电池组释放功率抵消低频波动负载,超级电容瞬时补偿高频波动功率,延长电池使用寿命并维持直流母线电压的稳定。验证了所提出的自适应能量优化方法的有效性,并确认该方法可以在离网微电网模拟和实验中维持离网微电网的稳定运行,延长蓄电池的循环寿命。
通过心率变异性生物反馈随机试验提高与情绪相关的大脑区域的协调性和反应性 Kaoru Nashiro 1、Jungwon Min 1、Hyun Joo Yoo 1、Christine Cho 1、Shelby L. Bachman 1、Shubir Dutt 1、Julian F. Thayer 2、Paul Lehrer 3、Tiantian Feng 1、Noah Mercer 1、Padideh Nasseri 1、Diana Wang 1、Catie Chang 4、Vasilis Z. Marmarelis 1、Shri Narayanan 1、Daniel A. Nation 2 和 Mara Mather 1 * 1 南加州大学、2 加州大学欧文分校、3 罗格斯大学、4 范德堡大学 Kaoru Nashiro,博士南加州大学伦纳德戴维斯老年学学院 nashiro@usc.edu Jungwon Min 心理学系 南加州大学 多恩西夫文学、艺术与科学学院 minjungw@usc.edu Hyun Joo Yoo,博士 南加州大学伦纳德戴维斯老年学学院 hyunjooy@usc.edu Christine Cho 南加州大学伦纳德戴维斯老年学学院 cho890@usc.edu Shelby L. Bachman 南加州大学伦纳德戴维斯老年学学院 sbachman@usc.edu Shubir Dutt 心理学系 南加州大学 多恩西夫文学、艺术与科学学院 shubirdu@usc.edu