摘要:青光眼是一种高度危险的眼部疾病,可显着影响人类视力。这是一种视网膜状况,会损害视神经头(ONH),如果在后期发现,可能会导致永久失明。预防永久性失明取决于青光眼在其初始阶段的及时识别和干预。本文介绍了卷积神经网络(CNN)模型,该模型利用特定的建筑设计来通过分析底面图像来识别早期青光眼。这项研究利用了公开访问的数据集,包括用于青光眼分析和研究的在线视网膜底面图像数据库(ORIGA),视网膜的结构化分析(凝视)和视网膜眼底青光眼挑战(避难所)。为了对青光眼进行分类,视网膜底面图像被送入Alexnet,VGG16,Resnet50和InceptionV3模型中。RESNET50和InceptionV3模型都证明了出色的性能,以创建混合模型。ORIGA数据集以97.4%的F1得分达到了高精度,而凝视数据集则获得了更高的精度,而F1分数为99.1%。避难数据集也表现出色,F1得分为99.2%。所提出的方法已经建立了可靠的青光眼诊断系统,帮助眼科医生和医生进行准确的质量筛查和诊断青光眼。
目的:评估深度学习算法在视网膜眼底图像中执行不同任务的性能:(1)检测视网膜眼底图像与光学相干断层扫描 (OCT) 或其他图像,(2)评估优质视网膜眼底图像,(3)区分右眼 (OD) 和左眼 (OS) 视网膜眼底图像,(4)检测老年性黄斑变性 (AMD) 和 (5) 检测可转诊的青光眼性视神经病变 (GON)。患者和方法:设计了五种算法。从包含 306,302 张图像的数据库(Optretina 的标记数据集)进行回顾性研究。三位不同的眼科医生(均为视网膜专家)对所有图像进行分类。数据集按患者分为训练(80%)和测试(20%)两部分。采用了三种不同的 CNN 架构,其中两种是定制设计的,以最小化参数数量,同时对其准确性的影响最小。主要结果测量是曲线下面积 (AUC),包括准确度、灵敏度和特异性。结果:视网膜眼底图像的测定 AUC 为 0.979,准确度为 96%(灵敏度 97.7%,特异性 92.4%)。高质量视网膜眼底图像的测定 AUC 为 0.947,准确度为 91.8%(灵敏度 96.9%,特异性 81.8%)。OD/OS 算法的 AUC 为 0.989,准确度为 97.4%。AMD 的 AUC 为 0.936,准确度为 86.3%(灵敏度 90.2%,特异性 82.5%),GON 的 AUC 为 0.863,准确度为 80.2%(灵敏度 76.8%,特异性 83.8%)。结论:深度学习算法可以将视网膜眼底图像与其他图像区分开来。算法可以评估图像的质量,区分右眼和左眼,并以高水平的准确度、灵敏度和特异性检测 AMD 和 GON 的存在。关键词:人工智能、视网膜疾病、筛查、视网膜眼底图像