人工智能识别视网膜眼底图像,...
机构名称:
¥ 1.0

目的:评估深度学习算法在视网膜眼底图像中执行不同任务的性能:(1)检测视网膜眼底图像与光学相干断层扫描 (OCT) 或其他图像,(2)评估优质视网膜眼底图像,(3)区分右眼 (OD) 和左眼 (OS) 视网膜眼底图像,(4)检测老年性黄斑变性 (AMD) 和 (5) 检测可转诊的青光眼性视神经病变 (GON)。患者和方法:设计了五种算法。从包含 306,302 张图像的数据库(Optretina 的标记数据集)进行回顾性研究。三位不同的眼科医生(均为视网膜专家)对所有图像进行分类。数据集按患者分为训练(80%)和测试(20%)两部分。采用了三种不同的 CNN 架构,其中两种是定制设计的,以最小化参数数量,同时对其准确性的影响最小。主要结果测量是曲线下面积 (AUC),包括准确度、灵敏度和特异性。结果:视网膜眼底图像的测定 AUC 为 0.979,准确度为 96%(灵敏度 97.7%,特异性 92.4%)。高质量视网膜眼底图像的测定 AUC 为 0.947,准确度为 91.8%(灵敏度 96.9%,特异性 81.8%)。OD/OS 算法的 AUC 为 0.989,准确度为 97.4%。AMD 的 AUC 为 0.936,准确度为 86.3%(灵敏度 90.2%,特异性 82.5%),GON 的 AUC 为 0.863,准确度为 80.2%(灵敏度 76.8%,特异性 83.8%)。结论:深度学习算法可以将视网膜眼底图像与其他图像区分开来。算法可以评估图像的质量,区分右眼和左眼,并以高水平的准确度、灵敏度和特异性检测 AMD 和 GON 的存在。关键词:人工智能、视网膜疾病、筛查、视网膜眼底图像

人工智能识别视网膜眼底图像,...

人工智能识别视网膜眼底图像,...PDF文件第1页

人工智能识别视网膜眼底图像,...PDF文件第2页

人工智能识别视网膜眼底图像,...PDF文件第3页

人工智能识别视网膜眼底图像,...PDF文件第4页

人工智能识别视网膜眼底图像,...PDF文件第5页

相关文件推荐

...中的人工智能
2024 年
¥1.0
人工智能检测与...
2023 年
¥1.0
生成人工智能 ...
2023 年
¥1.0
生成人工智能和...
2024 年
¥2.0