摘要:抗生素敏感性测试对于解决抗生素耐药性的出现和蔓延至关重要。廉价的数字 CMOS 相机可以使用 3D 打印 xyz 平台转换为便携式数字显微镜。通过显微镜检查细菌运动能力可以快速检测微生物对抗生素的反应,以确定其敏感性。在这里,我们介绍了一种用于多路复用抗生素敏感性测试的新型简单微型设备微型显微镜细胞测量系统。该微型设备采用熔融挤出的塑料薄膜条制成,其中包含十个平行的 0.2 毫米直径微毛细管。在 Mueller-Hinton 琼脂(0.4%)中制备两种不同的抗生素,头孢他啶和庆大霉素,以产生一种载有抗生素的微型设备,用于简单的样品添加。选择这种组合是为了与抗生素敏感性测试和运动能力测试的当前标准方法紧密匹配。使用低琼脂浓度可以观察到运动细菌进入毛细血管时对抗生素暴露的反应。该设备使用 Raspberry Pi 计算机和 v2 相机安装在 OpenFlexure 3D 打印数字显微镜上,无需使用昂贵的实验室显微镜。这种廉价便携的数字显微镜平台具有足够的放大倍数来检测运动细菌,同时具有足够宽的视野来监测细菌进入载有抗生素的微毛细血管时的行为。图像质量足以检测不同浓度的抗生素如何抑制细菌运动。我们得出结论,基于 Raspberry Pi 的 3D 打印显微镜与一次性微流体测试条相结合,可以快速、轻松地检测细菌运动,并有可能帮助检测抗生素耐药性。
摘要:可再生能源技术成本的快速下降使太阳能和风能成为世界许多地区最便宜的能源。这主要被视为推动电力部门快速脱碳的因素,但低成本、低碳能源可以产生巨大的次要影响,即降低其他领域能源密集型脱碳工作的成本。在本研究中,我们通过基于成熟技术的碳捕获和利用循环示例,考虑了“工业碳循环”的能源需求,这是一个新兴的范例,其中工业二氧化碳排放被捕获并再加工成化学品和燃料,我们评估了可再生能源成本下降对这些过程总体经济性的影响。在我们的示例过程中,通过胺洗涤工艺从水泥生产设施中捕获二氧化碳,并将其与太阳能聚合物电解质膜产生的氢气结合,利用电解生产甲醇。我们表明,目前中东地区实现的太阳能热和发电成本相对于已发表文献中的基线假设而言大幅降低了该过程的成本,并且根据目前的能源价格趋势推断不久的将来成本将降至目前基于化石燃料的过程的水平。
本论文是由默里州立数字公地的学生作品免费提供给您的。它已被默里州立数字共享的授权管理员纳入整合研究。有关更多信息,请联系msu.digitalcommons@murraystate.edu。
1 Wanger TC。 锂的未来 - 资源,回收和环境。 保护信2011,4(3):202-206。 2 Kim S-W。等。 可充电钠离子电池的电极材料:当前锂离子电池的潜在替代品。 高级能源材料2012,2(7):710-721。 3地球和海中的大量元素,CRC化学与物理学手册,第97版(2016- 2017年),第1页。 14-17。 4 Solvay或Ammonia-Soda工艺是从盐水和酸橙量表中生产苏打灰(碳酸钠)的商业和工业过程,该过程用于肥皂,纺织品和玻璃等产品。 5参见Faraday Insight 7(2020年5月),建立了负责任的钴供应链,以进行更详细的讨论。 6 Rudola,A。等。 高能密度钠离子电池的商业化:法拉第的旅程和前景。 材料化学杂志A,2021年,doi:10.1039/d1ta00376c。 7联合国新闻(2020年7月30日)透露:联合国儿童基金会分析发现,世界上三分之一的孩子被铅毒。 8钠离子细胞的存储和/或运输,J。Barker和C.J. Wright,2017年8月17日,酒吧。 编号 :US 2017 /0237270 A1。 9 Chayambuka,K。等人,审查的钠离子电池材料和电化学性能。 高级能源材料2018,8。1 Wanger TC。锂的未来 - 资源,回收和环境。保护信2011,4(3):202-206。2 Kim S-W。等。 可充电钠离子电池的电极材料:当前锂离子电池的潜在替代品。 高级能源材料2012,2(7):710-721。 3地球和海中的大量元素,CRC化学与物理学手册,第97版(2016- 2017年),第1页。 14-17。 4 Solvay或Ammonia-Soda工艺是从盐水和酸橙量表中生产苏打灰(碳酸钠)的商业和工业过程,该过程用于肥皂,纺织品和玻璃等产品。 5参见Faraday Insight 7(2020年5月),建立了负责任的钴供应链,以进行更详细的讨论。 6 Rudola,A。等。 高能密度钠离子电池的商业化:法拉第的旅程和前景。 材料化学杂志A,2021年,doi:10.1039/d1ta00376c。 7联合国新闻(2020年7月30日)透露:联合国儿童基金会分析发现,世界上三分之一的孩子被铅毒。 8钠离子细胞的存储和/或运输,J。Barker和C.J. Wright,2017年8月17日,酒吧。 编号 :US 2017 /0237270 A1。 9 Chayambuka,K。等人,审查的钠离子电池材料和电化学性能。 高级能源材料2018,8。2 Kim S-W。等。可充电钠离子电池的电极材料:当前锂离子电池的潜在替代品。高级能源材料2012,2(7):710-721。3地球和海中的大量元素,CRC化学与物理学手册,第97版(2016- 2017年),第1页。 14-17。4 Solvay或Ammonia-Soda工艺是从盐水和酸橙量表中生产苏打灰(碳酸钠)的商业和工业过程,该过程用于肥皂,纺织品和玻璃等产品。5参见Faraday Insight 7(2020年5月),建立了负责任的钴供应链,以进行更详细的讨论。 6 Rudola,A。等。 高能密度钠离子电池的商业化:法拉第的旅程和前景。 材料化学杂志A,2021年,doi:10.1039/d1ta00376c。 7联合国新闻(2020年7月30日)透露:联合国儿童基金会分析发现,世界上三分之一的孩子被铅毒。 8钠离子细胞的存储和/或运输,J。Barker和C.J. Wright,2017年8月17日,酒吧。 编号 :US 2017 /0237270 A1。 9 Chayambuka,K。等人,审查的钠离子电池材料和电化学性能。 高级能源材料2018,8。5参见Faraday Insight 7(2020年5月),建立了负责任的钴供应链,以进行更详细的讨论。6 Rudola,A。等。 高能密度钠离子电池的商业化:法拉第的旅程和前景。 材料化学杂志A,2021年,doi:10.1039/d1ta00376c。 7联合国新闻(2020年7月30日)透露:联合国儿童基金会分析发现,世界上三分之一的孩子被铅毒。 8钠离子细胞的存储和/或运输,J。Barker和C.J. Wright,2017年8月17日,酒吧。 编号 :US 2017 /0237270 A1。 9 Chayambuka,K。等人,审查的钠离子电池材料和电化学性能。 高级能源材料2018,8。6 Rudola,A。等。高能密度钠离子电池的商业化:法拉第的旅程和前景。材料化学杂志A,2021年,doi:10.1039/d1ta00376c。7联合国新闻(2020年7月30日)透露:联合国儿童基金会分析发现,世界上三分之一的孩子被铅毒。 8钠离子细胞的存储和/或运输,J。Barker和C.J. Wright,2017年8月17日,酒吧。 编号 :US 2017 /0237270 A1。 9 Chayambuka,K。等人,审查的钠离子电池材料和电化学性能。 高级能源材料2018,8。7联合国新闻(2020年7月30日)透露:联合国儿童基金会分析发现,世界上三分之一的孩子被铅毒。8钠离子细胞的存储和/或运输,J。Barker和C.J.Wright,2017年8月17日,酒吧。编号:US 2017 /0237270 A1。9 Chayambuka,K。等人,审查的钠离子电池材料和电化学性能。高级能源材料2018,8。
脑电波已被证明在整个个体中都足够独特,可以用作生物识别技术。他们还提供了与传统身份验证手段的优势,例如抵抗外部可观察性,可竞争性和内在的易感检测。但是,到目前为止,大多数研究都是用昂贵,笨重的医学级头盔进行的,这些头盔可用于日常使用。旨在将脑电波身份验证及其收益更接近现实世界的部署,我们使用消费者设备调查了大脑生物识别技术。我们进行了一项全面的体验,该实验比较了用户样本的五个身份验证任务,最大的五倍比以前的研究大10倍,并基于认知语义处理的三种新技术。我们分析了不同选项的性能和可用性,并使用此证据来引起设计和研究建议。我们的结果表明,基于对当前廉价技术的图像的响应,可以实现相等的错误率14.5%(相对于现有方法的37%-44%降低)。关于采用,用户要求更简单的设备,更快的身份验证和更好的隐私。
近年来,人们广泛研究了陶瓷制造过程中某些废料的回收利用,以从经济上证明与陶瓷制造相关的高昂成本是合理的,并避免这些废物被填埋[1-5]。多孔陶瓷具有许多应用领域,包括催化剂载体、熔融金属过滤器、高温隔热材料、电化学反应器中的隔板、生物反应器和骨组织工程、轻质夹层结构、水净化微孔膜和废水处理。此外,多孔陶瓷预制件还用于制备陶瓷-聚合物和陶瓷-金属复合材料[6]。陶瓷在许多应用领域的性能优于聚合物和金属竞争对手,因为它们的密度相对较低,这意味着重量轻、耐腐蚀(包括热腐蚀液体和气体)、热稳定性、化学惰性和
第 3 章。框架和方法. . . . . . . . . . . . . . . 18 3.1 概念证明. . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2 集中式设计. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... Barry Roberts 帮助开发了超声波防撞软件和硬件。Min Meng 和 Aki o K os aka 进行了基础实验,帮助我们理解
向南加州大学研究生院教职员工提交的论文,部分满足理学硕士学位(地理信息科学与技术)的要求 2015 年 8 月 版权所有 2015 Mark C. Dustin
1 一个多学科团队包括来自世界银行的团队负责人/土地律师、联合国粮农组织信息技术专家、具有 UAS 经验的国际测量师、当地测量师以及 GIS 和摄影测量领域的国际和当地大学教授。该团队得到了阿尔巴尼亚不动产登记处土地登记主管和 Komuna Farke 市长的协助,他们两人都为试点的实地工作和其他信息和数据集的获取提供了便利。
1 问题.... .... .... .... .... .... .... .... .... .... .... .... 1 运输成本高且影响广泛.... .... .... .... .... .... 1 当前运载火箭成本范围.... .... .... .... .... .... .... 1 独特的运输要求.... .... .... .... .... .... .... .... 2 确定每次发射消耗品的成本.... .... .... .... .... 2 确定每次发射航天飞机的成本.... .... .... .... .... 2 代表性运载火箭成本.... .... .... .... .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 航天飞机. . . . . . . . . . . . . 5 运载火箭成本分数. . . . . . . . . . . . 5 DSP 发射成本分数. . . . . . . . . . . . . 5 GPS 发射成本分数. . . . . . . . . . . . . 6 飞行器性能值. . . . . . . . . . . . . . 6 有效载荷发射效率值 . . . . . . . . . 7 预期效率趋势 . . . . . . . . . . 8 飞行器开发成本和扩展效应 . . . . . 8 有限的发射能力 . . . . . . . . . . . 9 成本目标和成本现实 . . . . . . . . . . . 10 商业发射行业考虑因素 . . . . . . 11 国外竞争 ...... ...... ......