发生在量子电路内部层的测量(中电路测量)是一种重要的量子计算原语,最显著的特点是用于量子误差校正。中电路测量既有经典输出也有量子输出,因此它们可能会受到终止量子电路的测量所不存在的误差模式的影响。在这里,我们展示了如何使用一种称为量子仪器线性门集断层扫描 (QILGST) 的技术来表征由量子仪器建模的中电路测量。然后,我们应用该技术来表征多量子位系统内超导传输量子位的色散测量。通过改变测量脉冲和后续门之间的延迟时间,我们探索了残余腔光子群对测量误差的影响。QILGST 可以解析不同的误差模式并量化测量的总误差;在我们的实验中,对于超过 1000 纳秒的延迟时间,我们测得的总误差率(即半钻石距离)为 ϵ ⋄ = 8 . 1 ± 1 。 4%、读出保真度为 97 . 0±0 . 3%、测量 0 和 1 时输出量子态保真度分别为 96 . 7±0 . 6% 和 93 . 7±0 . 7%。
在量子电路的内部层内发生的测量(中路测量)是有用的量子计算原始的,最著名的是用于量子误差纠正。中路测量值同时具有经典和量子输出,因此它们可能会受到误差模式,这些模式对于终止量子电路的测量不存在。在这里,我们展示了如何使用一种称为量子仪器线性栅极组合层摄影(QILGST)的技术来表征由量子仪器建模的中路测量值。然后,我们将此技术应用于在多Qubit系统内的超导式传输矩形上表征分散测量。通过改变测量脉冲和随后的门之间的延迟时间,我们探讨了残留空腔光子群体对测量误差的影响。QILGST可以解决不同的误差模式并量化测量中的总误差;在我们的实验中,对于1000 ns以上的延迟时间,我们测量了总误差率(即半钻石距离)!!= 8.1±1.4%,读出97.0±0.3%的读数和输出量子态填充率分别为96.7±0.6%和93.7±0.7%,分别为0和1时。
在量子电路内层进行的测量(即电路中部测量)是一种有用的量子计算原语,最显著的特点是用于量子误差校正。电路中部测量既有经典输出,也有量子输出,因此它们可能会受到终止量子电路的测量所不存在的误差模式的影响。在这里,我们展示了如何使用一种我们称之为量子仪器线性门集断层扫描 (QILGST) 的技术来表征由量子仪器建模的电路中部测量。然后,我们应用这种技术来表征多量子位系统内超导 transmon 量子位的色散测量。通过改变测量脉冲和后续门之间的延迟时间,我们探索了残余腔光子群对测量误差的影响。QILGST 可以解析不同的误差模式并量化测量的总误差;在我们的实验中,对于超过 1000 纳秒的延迟时间,我们测得的总误差率(即半钻石距离)为!! = 8.1 ± 1.4%,读出保真度为 97.0 ± 0.3%,测量 0 和 1 时输出量子态保真度分别为 96.7 ± 0.6% 和 93.7 ± 0.7%。
摘要:在这种情况下,所有电子设备都暴露于老化的机制和可变性问题,可能会影响电路的性能和稳定运行。要描述电路模拟设备的行为,需要捕获设备降解的物理模型。通常基于封闭形式数学表达式的紧凑模型通常用于电路分析,但是,这种模型通常不是很准确。在这项工作中,我们使用物理可靠性模型,并将其应用于伪CMOS逻辑逆变器电路的老化模拟。采用的模型可通过我们的可靠性模拟器构成获得,并经过校准,以评估偏置温度不稳定性(BTI)降解现象对逆变器电路的性能由商业SIC Power MOSFET制成的性能。使用香料模拟,我们提取逆变器电路的传播延迟时间,并考虑到在DC和AC工作条件下的压力时间的晶体管阈值电压漂移。为了达到评估的最高准确性,我们还考虑在AC信号的低偏置阶段回收设备的恢复,这在现有方法中通常被忽略。基于传播延迟时间分布,在本工作中也讨论了合适的物理缺陷模型精确分析电路操作的重要性。
本文研究了由于Jeffrey杂交纳米流体流动而导致的太阳能储能,该流通过多孔介质用于抛物线槽太阳能收集器。在悬浮水基传热液中,还遇到了石墨烯和银纳米颗粒的热疗法和布朗运动的机制。旋转的微生物具有在纳米流体混合物中向上移动的能力,从而增强了纳米颗粒的稳定性和悬浮液中的流体混合。管理方程式的数学建模使用质量,动量,能量,浓度和微生物浓度的保护原理。非相似变量被引入尺寸管理方程式,以获取非量纲的普通微分方程。实施现金和鲤鱼方法来求解非二维方程。还使用Levenberg Marquardt算法为非维度的方程开发了人工神经网络。对应于影响纳米流体流和传热的不同参数的数值发现。观察到热曲线会随着达西和福切氏症参数的升级而增强。和Nusselt数字随着Deborah数字和延迟时间参数的升级而增强。熵生成可以随着Deborah数字和延迟时间参数的增强而降低。太阳能是最好的可再生能源。它可以满足行业和工程应用增长的能源需求。
摘要 在英国,追尾碰撞占所有车辆事故的 8% 左右,而未注意到或对刹车灯信号做出反应是主要原因。同时,车辆上传统的白炽刹车灯正越来越多地被大量采用 LED 的设计所取代。在本文中,我们使用一种新方法在模拟环境中使用物理刹车灯组件记录受试者的反应时间来研究刹车灯设计的有效性。测量了 22 名受试者对 10 对 LED 和白炽灯刹车灯的反应时间。为每个受试者调查了三个事件,即刹车灯亮到油门松开的延迟时间(BrakeAcc)、油门松开到刹车踏板踩下的延迟时间(AccPdl)以及从灯亮到刹车踏板踩下的累积时间(BrakePdl)。据我们所知,这是第一项将反应时间分为 BrakeAcc 和 AccPdl 的研究。结果表明,与八个测试的 LED 灯相比,两个装有白炽灯泡的刹车灯导致反应时间明显变慢。BrakeAcc 结果还显示,经验丰富的受试者通过松开油门踏板对刹车灯的激活做出反应更快。有趣的是,分析还显示,刹车灯的类型会影响 AccPdl 时间,尽管经验丰富的受试者并不总是比没有经验的受试者反应更快。总体而言,研究发现,不同设计的刹车灯会显著影响驾驶员的反应时间。
“第 10.5 条 – “在配电许可证持有人或中介采购商根据情况根据《法案》第 63 条向适当委员会提出通过电价申请后,如果适当委员会未在申请提交后 60(六十)天内或电力销售协议 (PSA) 签署后 120(一百二十)天内(以较长者为准)就电价做出决定,则采购商应给予发电机适当的 SCSD 延期,延期时间应与适当委员会通过/批准的延迟时间相对应[超过申请提交后 60(六十)天或 PSA 签署后 120(一百二十)天(以较长者为准)],直至适当委员会通过/批准之日。”
模块 1 : 4 串电池组输入端, BAT- 为电池组最低端的负极, VC1 为第一节电池正端, VC2 为第 二节电池正端, VC3 为第三节电池正端, BAT+ 为第四节电池正端(即电池组的最高极)。 CW1243 没有上电顺序要求,但建议从低节到高节依次上电,避免出现接错,反接等现象。注意 BAT- , BAT+ 在充放电过程中会有大电流,接在 BAT- , BAT+ 上的导线最好能够足够粗。 模块 2 : 电池组电压进芯片端滤波电路,电容尽量靠近芯片。 模块 3 : R SENSE 电阻,通过检测其上的电压值,计算放电过程中的电流。 模块 4 : 103AT NTC 电阻( 3435 )。 模块 5 : 充放电负端。 模块 6 : 充电正端,二极管是为防止充电器反接,如不需要,可以拆掉,用导线将两端短接。 模块 7 : P+ , P- 放电端口的稳压,续流二极管以及电容。 模块 8 : CIT 电容,控制放电过流 1 ,过流 2 延时时间电容,可以根据需要自行更换。 模块 9 : 充放电高温保护匹配电阻。 模块 10 : VINI 处滤波电路 R 以及 C ,可以适当的调节过流保护延迟时间,同时提高电流检测 精度。
摘要:自动驾驶汽车有可能显着改善运输方式,许多企业和研究设施正在开发此类系统。尽管有关于自动驾驶汽车的社会实施的研究,但这些研究基于有限的条件,例如预定的驾驶环境。因此,在这项研究中,我们针对城市地区和农村地区,并模拟了卡纳泽大学开发和拥有的自动驾驶汽车的行为算法。在这项研究中,使用当地政府进行的人群调查的数据,建造了一个交通流量模拟系统(AIMSUN),以在正常时期重现该城市的当前交通流量。此外,我们改变了自动车辆的混合速率,并评估了其对OD之间延迟时间的影响。我们假设在实际的道路网络上逐渐替换了由自动驾驶汽车逐步替换现有的车辆,并且我们研究了它们对交通流量的影响。我们将自动驾驶汽车的混合速率改变为实际的交通环境,我们测量了原点污染(OD)间隔的延迟,以评估自动驾驶汽车对交通流量的影响。获得的结果表明,随着自动驾驶汽车的混合速率增加,OD间隔之间的延迟增加。然后,一旦混合速率超过一定值,OD间隔之间的延迟逐渐下降。随着自动驾驶汽车的混合速率从10增加到45%,所有车辆的延迟时间略有增加。当混合速率从45%增加到50%时,所有车辆的延迟时间都会降低,当混合速率为50至100%时,它保持恒定。分析结果表明,当社会实施自动驾驶汽车时,它们的混合速率会影响交通流量。因此,有必要确定适当的分发方案和实施领域。