这项工作属于版权。所有权利都是由出版商唯一的,全部由材料的全部或部分授权的,特别是涉及翻译,重新使用,重新使用,插图,朗诵,广播,对微观或以任何其他物理方式或任何其他物理方式,以及传输或信息的存储和电子设置,计算机或计算机或相似的方法,或者以任何其他物理方式的复制,或者使用。使用一般描述性名称,注册名称,商标,服务标记等。在本出版物中,即使在没有特定陈述的情况下,这种名称也不受相关的保护法律和法规的限制,因此也没有暗示,因此可以免费使用。出版商,作者和编辑可以肯定地假设本书中的建议和信息在出版之日被认为是真实而准确的。就本文包含的材料或可能已犯的任何错误或遗漏而言,出版商,作者或编辑都没有提供任何明示或暗示的保修。出版商在已发表的地图和机构之后的管辖权索赔方面保持中立。
2019年5月7日,《清洁建筑法案》(第285章,2019年法律)被签署为法律。华盛顿州立法机关指示商业为大于50,000平方英尺(SF)的覆盖商业建筑建立州能源绩效标准。立法机关指示商业,以最大程度地减少建筑业的温室气体排放。商业被指示采用美国供暖,冷藏和空调工程师(ASHRAE)标准100-2018作为模型标准,并修改标准以满足法律的特定要求。
所有新房屋以及一些翻新,更改和补充必须遵守NCC的能效要求。要求是针对建筑物类型量身定制的(例如对单层和多层住宅存在不同的要求),可以通过使用多种因素(例如绝缘,外部玻璃,密封,服务,服务和通风控制)来达到六星级性能评级。该标准的目的包括减少能源消耗的环境影响。在维多利亚州,所有新的1级住宅(独立或半独立的房屋)也必须安装雨水罐进行洗手间或太阳能热水系统。这是通过维多利亚时代对NCC的要求的变化设定的,并提供了管制法规中的规定。
摘要。这项研究介绍了一种新型的能源管理方法,名为Cirlem,旨在通过专注于技术系统操作,环境变化和乘员的需求来增强建筑物的智能。使用建筑绩效模拟和Python集成部署在模拟环境中,该研究采用了一系列代表性的气候数据,评估了CIRLEM在未来的极端寒冷天气情况下的表现。试点案例,瑞典的两个构建块,对能源需求,峰值功率和热舒适度进行了评估。结果表明,尤其是在需求和价格信号驱动的情况下,有效地降低了能源需求和成本,表明对极端天气状况的适应性强大。在温度限制和变化方面,保持热舒适度。正在进行的发展试图完善奖励功能和信号产生,以增强热舒适度和现实世界的实现。
森林和农田中植物的合成。这意味着CO 2已经存储在这些土地类别的碳池中。收获的生物质是从这些池中取出的,然后通过生物生物产物转移到建筑物中。从一个碳池到另一个碳池的转变并不一定会导致拆卸的增强。此外,生物量损失经常在生物产物生产过程中发生,而并非所有收获的生物质都将其转移到建筑物中。根据生物量生产区域的不同,要在气候弹性森林中的木材库存中添加碳库可能比在建筑物中存放木材更有效。在其他情况下,增加建筑物中的木材库存而不是森林地区的木材可能是有利的,例如,对于不稳定的云杉摊位具有很高的死亡风险(请参阅我们在会计有关生物量的跨切割发现以获取更多详细信息)。
摘要 — 雷达遥感高度提取是建筑物检测与识别中一个备受关注的问题。根据对SAR图像中建筑物几何特性的分析,提出了一种基于模型的几何结构预测与匹配策略的高度估计算法。引入距离多普勒方程并对其进行简化,用于倾斜图像平面中建筑物二维几何结构预测。还建立了一个基于指数加权平均值比(ROEWA)的评估函数,用于预测结构与观测到的SAR图像之间的匹配。通过结合遗传算法(GA),最大化评估函数以获得最佳高度参数。使用模拟和真实的机载和星载SAR图像的实验结果表明,所提出的方法可以有效地从单个SAR图像估计建筑物高度,并且在部分遮挡情况下比两种流行的算法取得更好的性能。
摘要 - 本文重点介绍一种从卫星图像中快速提取建筑物边界的自动算法,并对双边滤波器 (BF) 和自适应双边滤波器 (ABF) 进行了实验比较。研究和实验结果证明,ABF 的结果比 BF 的结果好得多。ABF 产生的结果比 BF 更有希望。旧的和传统的建筑物边界提取模型非常复杂且耗时。所提出的建筑物边界提取程序包括三个主要阶段:(1)使用自适应双边滤波器进行边缘保留和平滑,(2)使用 ED Line 算法检测线段,(3)使用感知分组技术识别多边形建筑物边界。我们提出的算法在 HR(高分辨率)Quick Bird 卫星图像上进行了测试,获得的结果很有希望并且几乎是实时的。因此,实验结果足够有用,总体准确率为 88.24%,这对于进一步了解建筑物边界的图像以及在实时环境中识别目标来说足够准确,并且有助于解决早期识别未经授权和非法建筑物的问题。关键词:Quick Bird 卫星图像、自适应双边滤波器(ABF)、双边滤波器、高分辨率卫星图像、直方图均衡化、ED 线检测器算法、建筑物边界提取。
摘要 能源部门是国家发展的主要领域。欧盟国家总能源需求的近 40% 由建筑部门消耗,其中 60% 仅用于供暖和制冷需求。这是一个主要问题,因为化石燃料储备正在枯竭,全球变暖正在加剧。这是热能储存可以发挥重要作用的地方,可以减少建筑部门对化石燃料的依赖,以满足能源需求(供暖和制冷)。热能储存是指与主要来自太阳辐射的热能传输和储存有关的技术,而不是与来自环境的冷能传输和储存有关的技术,通过在夏季提供冷气,在冬季提供热量,为建筑物中的居民保持舒适的温度。这项工作是对建筑物中使用热能储存的广泛研究。它讨论了在建筑物中实施热能储存的不同方法,特别是使用相变材料,并强调了实施该技术所面临的挑战和机遇。此外,这项研究还解释了热能存储所涉及的不同类型和方法的原理。
BXP在其所有财产中追求最佳实践废物管理,并纳入BXP废物管理计划中,该计划概述了其建筑物的回收和堆肥指南。建立生命周期影响减少是改造方法的基础。通过重复和优化现有的建筑结构,信封和内部以将废物限制为垃圾填埋场,为LEED认证的这一部分建立目标最大点。例如,现有窗户被重新密封而不是在建模能量性能和体现碳后更换。重新密封现有的高性能窗户提高了能源效率并提高了热舒适度,而无需用新材料代替它们,从而支持循环经济原则。除了重复现有的结构和信封建设要素外,该团队还达到了50%的建筑废物转移率。