摘要:光伏 (PV) 发电机是现代电网的重要组成部分。大多数 PV 系统利用各种最大功率点跟踪 (MPPT) 算法向公用设施注入最大可用功率。然而,在阳光明媚的日子里,持续获得最大功率会导致基于电力电子的 DC-DC 转换器的热应力增加和可靠性降低。本文提出了一种 DC-DC 转换器的热模型,该模型根据热传感器感测到的功率损耗和环境温度来评估累积温度。建议采用热控制策略将转换器主要组件的温度保持在允许的范围内。热控制包括两个阶段:初级阶段,调整 IGBT 开关的开关频率以降低累积温度;次级阶段,调整基于电流的 MPPT 算法以降低通过主开关的最大电流。这种方法旨在延长所用 DC-DC 转换器的使用寿命并降低其运营成本。此外,通过频率响应的稳定性分析确定开关频率变化的允许范围,使用闭环系统的波特图来评估频率响应的稳定性。所提出的热控制是在 MATLAB/Simulink 环境中实现的。相关结果证明了所提出的控制在将温度保持在可接受的范围内并从而提高系统可靠性方面的有效性。
1。上下文SIC MOSFET由于其强劲的损失而广泛用于新应用设计,并且具有高开关频率和高工作温度的功能。与氧化门相关的可靠性问题已经很好地解决,并且已经发表了许多有关阈值电压不稳定性的研究[1; 2]。使用车身二极管避免外部Schottky二极管[3; 4]。在本研究中,对1.2 kV的SIC MOSFET体二极管进行了压力并进行了研究,以确定使用时任何衰老或降解问题。
1。引言电力电子技术始终发展为更高效率,更高的功率密度和更集成的系统[1],[2]。目前,大多数转换器均设计为嵌入到应用程序外壳中,因此其体积受产品案例大小的限制。使用较小的被动元素和较高的开关频率实现了这种尺寸的降低[3],这构成了由于切换和驱动损失而引起的新挑战系统效率[4]。增加系统的功率密度而不影响整体效率需要提高功率开关的进步。不幸的是,基于硅(SI)的功率设备特性正在达到其理论限制,并且在阻断电压能力,操作温度和开关频率限制其使用方面具有重要的局限性[1],[5]。在过去的几年中,基于宽带盖(WBG)半导体材料[6]的新一代电源设备可作为商业货架(COTS)产品使用。WBG半导体,例如碳化硅(SIC)和硝酸盐(GAN),显示出改进的材料特性,使其成为SI Power Devices替换时的绝佳选择。WBG材料的特征是它们的高电场强度,它允许具有高掺杂速率的非常薄的漂移层[7],[8]。因此,基于这些材料的设备受益于降低州立电阻的能力,从而减少了传导损失[9]。此外,WGB材料中的载体移动性比SI优于SI,可以更快地转到 /关闭开关时间,从而降低开关损失。
以 10KVA 电源模块为步长,输出功率高达 160KVA,适用于低功率振动台系统的 KVA 电源模块采用最新 MOSFET 技术,高效率,高保护标准,配备全系列系统联锁电路,确保高可靠性,符合国际安全和 EMC 标准,开关频率允许高信号带宽,谐波失真独立设计,包括场/消磁场电源和 EMI 滤波器,为振动控制器或客户仪器提供自由空间。使用触摸屏用户界面进行控制,可控制冲击和随机测试的峰值性能
摘要 隔离式 DC-DC 转换器通常用于多种系统,包括分布式发电系统、储能系统和飞机电源转换系统。本研究涉及设计全桥 DC-DC 转换器并使用 NSGA-II 算法提高其可靠性。该研究评估了输出功率、开关频率、变压器匝数比和输入电压等各种参数对转换器可靠性性能的影响。可靠性和平均故障时间是通过考虑所有组件中的开路和短路故障的马尔可夫可靠性模型确定的。转换器组件故障率是使用 MIL-HDBK-217 标准计算的。结果表明转换器的可靠性性能有所提高。
在 Wolfspeed,COMSOL Multiphysics ® 软件模拟在设计阶段被证明对节省时间和金钱特别有帮助。他的新设计基于两种宽带隙半导体,氮化镓 (GaN) 和碳化硅 (SiC),它们在高频和高温下稳定运行。模拟对于找到几何和材料特性的最佳组合以优化新电源模块的重量、开关频率和功率密度至关重要(图 2)。“Wolfspeed 专注于高功率密度产品,这些产品需要进行大量精确测试才能完善。在投入金钱和时间进行原型设计和构建之前,能够进行模拟是非常有价值的,”他评论道。
飞机网络内的所有设备都必须遵守国际标准(例如 DO160)或制造商习惯(例如组件的降额/应力)规定的多项要求。最严格的标准之一是电磁干扰 (EMI),即转换器不会干扰或被电网上的其他设备干扰。为了减小转换器尺寸,总体趋势是增加开关频率,但这意味着损耗增加。此外,电源安装在密闭环境中。在最极端的应用(工作温度从 -55°C 到 +110°C)中,它们无法通过强制对流冷却。在这种情况下,电源损耗会影响转换器的体积和重量,以防止其过热。因此,显著提高效率是主要目标
Rad Hard eGaN® 晶体管专为高可靠性或商业卫星空间环境中的关键应用而设计。GaN 晶体管在空间环境中具有出色的可靠性性能,因为单事件没有少数载流子,作为宽带半导体,质子和中子的位移更小,而且没有氧化物击穿。这些器件具有极高的电子迁移率和低温度系数,从而导致非常低的 R DS(on) 值。芯片的横向结构提供了非常低的栅极电荷 (QG ) 和极快的开关时间。这些特性使电源开关频率更快,从而实现更高的功率密度、更高的效率和更紧凑的设计。
• 一类/一级生产筛选 • 提供批次验收测试选项 • 650 V 增强型功率晶体管 • 顶部冷却、低电感 GaNPX ® 封装 • RDS(on) = 25 mΩ • IDS(max) = 60 A • 超低 FOM • 简单的栅极驱动要求(0 V 至 6 V) • 瞬态耐受栅极驱动(-20 V/+10 V) • 非常高的开关频率(> 10 MHz) • 快速且可控的下降和上升时间 • 反向传导能力 • 零反向恢复损耗 • 小型 9 x 7.6 mm 2 PCB 占用空间 • 双栅极焊盘可实现最佳电路板布局