简要工作描述:履行前一级别或技能要求的职责,并为低级别人员提供指导。指导供应人员根据现行政策/程序指令建立财产和库存控制管理职能。根据 GCSS-Army 维护财产和设备。审查所有财产和设备交易的每日和每月记录,包括石油产品、单位/组织基本/战斗负荷和运营供应品。核对所有本地采购交易以进行财务/财产会计核算。确保武器/敏感物品库存按照现行监管程序进行。为单位/组织设备和记录零件专家 (92A) 提供技术援助。协助和建议供应官和连长。
事件相机具有高时间分辨率、高动态范围、低功耗和高像素带宽等特点,为特殊环境中的物体检测提供了独特的功能。尽管有这些优势,事件数据固有的稀疏性和异步性对现有的物体检测算法提出了挑战。脉冲神经网络 (SNN) 受到人脑编码和处理信息方式的启发,为这些困难提供了潜在的解决方案。然而,在当前的实现中,它们在使用事件相机进行物体检测方面的性能受到限制。在本文中,我们提出了脉冲融合物体检测器 (SFOD),一种基于 SNN 的简单有效的物体检测方法。具体而言,我们设计了一个脉冲融合模块,首次实现了应用于事件相机的 SNN 中不同尺度特征图的融合。此外,通过整合我们在 NCAR 数据集上对主干网络进行预训练期间进行的分析和实验,我们深入研究了脉冲解码策略和损失函数对模型性能的影响。从而,我们建立了基于 SNN 的当前最佳分类结果,在 NCAR 数据集上实现了 93.7% 的准确率。在 GEN1 检测数据集上的实验结果表明,SFOD 实现了 32.1% 的当前最佳 mAP,优于现有的基于 SNN 的方法。我们的研究不仅强调了 SNN 在事件摄像机物体检测中的潜力,而且推动了 SNN 的发展。代码可在 https://github.com/yimeng-fan/SFOD 获得。
考虑范围:考虑范围:为了有资格担任此职位,申请人必须满足本公告中列出的最低资格要求。必须在 E6 至 E7 等级之间。免责声明:您(申请人)负责申请内容和附件(包括其提交)的准确性和完整性。请确保您的申请中包含清单上的所有必需文件(如适用)。对于任何缺失或过期的文件,都需要提供说明备忘录。缺少文件且未提供说明备忘录的申请将被“取消资格”。
考虑范围:考虑范围:为了有资格担任此职位,申请人必须满足本公告中列出的最低资格要求。必须在 E7 到 E8 的等级范围内。免责声明:您(申请人)负责申请内容和附件(包括其提交)的准确性和完整性。请确保您的申请中包含清单上的所有必需文件(如适用)。对于任何缺失或过期的文件,都需要提供说明备忘录。缺少文件且没有说明备忘录的申请将被“取消资格”。
在最近的研究中,已对开放式摄制对象检测任务进行了大量关注,旨在概括训练期间标记的类别的有限级别,并检测推理时任意类别名称所描述的对象。与常规对象检测相比,打开的词汇对象检测在很大程度上扩展了对象检测类别。但是,它依赖于计算图像区域与一组具有验证视觉和语言模型的任意类别名称之间的相似性。这意味着,尽管具有开放式的性质,但该任务仍然需要在推理阶段的预定义对象类别。这提出了一个问题:如果我们在推理中对对象类别没有确切的了解,该怎么办?在本文中,我们称之为新的设置为生成性开放式对象检测,这是一个更普遍和实际的问题。为了解决它,我们将对象检测形式为生成问题,并提出了一个名为generateu的简单框架,该框架可以检测密集的对象并以自由形式的方式生成其名称。尤其是,我们采用可变形的DETR作为区域促成生成器,其语言模型将视觉区域转换为对象名称。为了评估自由形式的对象划分任务,我们介绍了一种评估方法,旨在定量测量生成量的性能。广泛的实验表明我们的生成量强烈的零射击性能。代码可在以下网址获得:https://github.com/foundationvision/generateu。例如,在LVIS数据集上,我们的GenerateU在推理过程中属于类别名称,即类别名称无法看到类别名称,即使类别名称看不见类别名称,我们的GenerateU也可以与开放式唱机对象检测方法GLIP相当。
为了实现气候目标,未来的能源系统必须严重依赖风能和光伏 (PV) 等可变可再生能源 (VRES)。随着 VRES 份额的增加,灵活性以及不同灵活性选项的智能相互作用等主题变得越来越重要。分析灵活性选项和增强未来能源系统设计的一种方法是使用能源系统建模工具。尽管存在各种可公开访问的模型,但并没有明确的评估来评估这些工具中如何体现灵活性。为了弥补这一差距,本文提取了灵活性表示的关键因素,并引入了灵活性和影响因素的新分类。为了评估当前的建模状况,我们向开放能源建模工具的开发人员发送了一份调查问卷,并使用新推出的开放 ESM 灵活性评估工具 (OpFEl) 进行分析,这是一种开源评估算法,用于评估工具中不同灵活性选项的表示。结果显示,各种不同的工具涵盖了灵活性的大多数方面。可以看出,出现了包括部门耦合元素的趋势。然而,当前模型中仍未充分体现储能和网络类型灵活性以及涉及系统运行的方面,应更详细地纳入其中。没有一个模型能够高度涵盖所有类别的灵活性选项,但通过软耦合将不同模型组合起来可以作为整体灵活性评估的基础。这反过来又可以基于 VRES 对能源系统进行详细评估。
手势在人类和人类机器人相互作用中起着关键作用。在基于任务的上下文中,诸如指向之类的神性手势对于指导关注与任务相关的实体至关重要。虽然大多数基于任务的人类和人类手机Di-Alogue专注于封闭世界领域的工作,但重新研究已开始考虑开放世界任务,在这种任务中,与任务相关的对象可能不知道与先验者相互作用。在开放世界任务中,我们认为必须对手势进行更细微的考虑,因为交互者可以使用桥接传统手势类别的手势,以便浏览其任务环境的开放世界维度。在这项工作中,我们探讨了在开放世界任务上下文中使用的手势类型及其使用频率。我们的结果表明需要重新考虑在人类和人类机器人相互作用的研究中进行手势分析的方式。
单光摄像机的惊人发展为科学和工业成像创造了前所未有的机会。但是,这些1位传感器通过这些1位传感器进行的高数据吞吐量为低功率应用创造了重要的瓶颈。在本文中,我们探讨了从单光摄像机的单个二进制框架生成颜色图像的可能性。显然,由于暴露程度的差异,我们发现这个问题对于标准色素化方法特别困难。我们论文的核心创新是在神经普通微分方程(神经ode)下构建的暴露合成模型,它使我们能够从单个观察中产生持续的暴露量。这种创新可确保在Col-Orizers进行的二进制图像中保持一致的曝光,从而显着增强了着色。我们演示了该方法在单图像和爆发着色中的应用,并显示出优于基准的生成性能。项目网站可以在https://vishal-s-p.github.io/projects/ 2023/generative_quanta_color.html
2024 年 2 月 19 日 — 国防部招标估算。备注。日期和时间。资格... 估算价格。¥。(不含消费税和地方消费税。)产品名称。规格... 规格。单位。数量。单价。金额。Gacha 立方体。
