图 1. 完整的风洞组件 ...................................................................................................... 2 图 2. 位于收缩锥前方的蜂窝结构 ...................................................................................... 5 图 3. 拆解的风洞组件:(1)收缩锥,(2)测试/工作部分,和(3)扩散器 ............................................................................................................. 5 图 4. 安装风扇并连接到 12 伏电池的驱动部分 ............................................................................. 6 图 5. 收缩锥示意图 ............................................................................................................. 10 图 6. 测试部分内的安装物体 ............................................................................................. 10 图 7. 扩散器示意图 ............................................................................................................. 11 图 8. 数字风速计 ............................................................................................................. 12 图 9. 双输入数字压力计 ............................................................................................. 12 图 10. 用于收集数据的测试部分内的风速计装置 ............................................................................. 12 图11. 12 伏电池和鳄鱼夹用于为风扇供电 ................................................................ 14 图 12. 收缩锥(SolidWorks) ................................................................
1) 新加坡南洋理工大学电气与电子工程学院,50 Nanyang Avenue 639798,新加坡。2) 韩国机械材料研究所纳米融合机械研究部,韩国大田儒城区 34103,韩国。3) 德克萨斯大学阿灵顿分校电气工程系,德克萨斯州阿灵顿 76019,美国。4) 伊利诺伊大学厄巴纳-香槟分校电气与计算机工程系和 Holonyak 微纳米技术实验室,伊利诺伊州厄巴纳 61801,美国 关键词。金属辅助化学蚀刻;多孔 Ge;抗反射;
摘要 — 风洞是一种管状装置,其横截面逐渐变化,就像文丘里流量计一样,并具有使用强力风扇吹风的功能。它是机械和航空航天工程实验室研究全尺寸或缩小版汽车或飞机模型周围气流行为的典型设备。因此,它在空气动力学设计中起着至关重要的作用,节省了实时运行过程中因故障而产生的成本和时间。实验室使用中小型风洞进行实验和研究。虽然与商用风洞相比,这些风洞的尺寸相对较小,但满足其准确和精确的设计和制造规范是一项相当艰巨的任务。本文回顾了与此类低亚音速开路风洞的设计、制造和测试方面相关的几项先前研究。它侧重于各种风洞组件的设计方面,例如测试段、收缩锥、扩散器、驱动系统和沉降室。文中还介绍了制造该器件所用的材料。文中还简要讨论了实验测试和 CFD 模拟的结果。
文丘里流量计,使用强力风扇吹风。它是机械和航空航天工程实验室研究全尺寸或缩小版汽车或飞机模型周围气流行为的典型设备。因此,它在空气动力学设计中起着至关重要的作用,节省了实时操作过程中因故障而产生的成本和时间。实验室使用中小型风洞进行实验和研究。虽然与商用风洞相比,这些风洞的规模相对较小,但满足其准确和精确的设计和制造规格是一项相当艰巨的任务。本文回顾了与此类低亚音速开路风洞的设计、制造和测试方面相关的几项先前研究。它侧重于各种风洞组件的设计方面,例如测试段、收缩锥、扩散器、驱动系统和沉降室。它还揭示了用于制造这些风洞的材料。还简要讨论了实验测试和 CFD 模拟的结果。
过温保护(OTP) VDD 欠压/过压保护(UVLO&OVP) 逐周期电流限制(OCP) Cs 短路/开路保护(CS O/SP) 反馈环路开路保护(OLP)
摘要 — 本文首先讨论了在短路电热应力下 1200 V SiC 功率 MOSFET 中产生短路故障或开路故障特征的判别现象。由于开路故障行为与应用特别相关,本文接着提出了对一些商用器件的基准测试,确定了一款产品,该产品在偏置电压高达额定值的至少 50% 的情况下,能够提供一致的开路故障特性。对于该特定器件,我们将提供全面的功能和结构特性。具体而言,本文表明:栅极电流是短路应力下随后发生的退化的有效监测器,可用于评估损伤积累以及器件退化的可逆性或永久性;开路故障特征与栅极结构的退化有关,在距离有源单元相对较远且不涉及场氧化物的区域中,栅极和源极端子之间会产生短路。该发现与分立器件和多芯片功率模块(包括多个并联连接的芯片)的应用相关。
输出信号类型 串行数据:差分线路驱动器产生两个哈佛双相通道,电平为 RS-422-A。每秒最多可传输 256 个字。提供其他速度选项。每字 12 位 - 11 位数据加奇校验位 (LSB) B.I.T.E。:集电极开路输出提供 ESD3521A 一般故障状态。记录器控制:集电极开路输出提供记录器的开/关控制。传感器电源:+5V,50mA 电源用于外部电位计。
目标是确定Thevenin和Norton形式中的开路输出电压。由于电路打开时没有电流流,因此源电压出现在整个负载上。这意味着以Thevenin形式的开路输出电压仅仅是源电压。要以诺顿的形式找到开路输出电压,我们可以使用欧姆定律来计算等效电阻,然后将其应用于源电压。其余的文本似乎是Adel S. Sedra和Kenneth C. Smith的出版物“微电子电路”的版权通知和确认。它还包含第1-16章的练习解决方案,其中包括与微电子电路有关的问题和答案。最后,有一些特定的练习(例如ex:1-1)当输出端子打开或短路以及其他涉及电阻器,电容器和电压源的计算时,涉及计算开路输出电压。在此处给出的文字:x 35 cm/s'=)lpvt“'a。:12.4 cm2/s j> nd aqu :(。1._!!,/! + jl!c ..),n v equationl .. 5u(,l,n,〜1。,lo“'x 1.6 x i()x [v w〜-'----------' - 等式1。52 x J'x 5 19:>> np nn i :::: w·_ ;;;''' i,(e \'/\'.. 1· - i)ly,l,。,•。r:quatjon 1〜。。; -3(。1 N1)。; v,ex:l。 36 ::。a,1,v“ w /l 1。< /div>()〜x x•j 1()。1.6 x 10-IQ 1.66>:10 11(_!_--- + ___ 1 _,)(0.814- 0.605)ern!(} ix 10 1“ 0.166 ij.rll r;:。〜-〜- ~~ - a .j2〜sqn 0 V 0 kx:1。37 [“” V〜IN .- 〜Ampk n〜。> 1。2;>'f。,,,\ 1,ii,11。:10' /em·和V1 1••,。“ < /div>~~“'”〜------,〜-〜“” t〜'(〜;•;〜)v,。+ vi?io“ tnn'll-?> - :: ll)'')'10“'(,j)l {u〜ign q1)
开路风洞与闭路风洞 开路风洞、消声风洞和闭路风洞均用于研究各种流动引起的噪声现象的空气动力学和气动声学。测试设施的选择主要取决于应用类型、设计速度和所需的模型比例。首选设置还受空气动力学或噪声测量优先级的影响。由于存在保持雷诺数(惯性力与粘性力之比)的问题,风洞也可以加压并在低温下运行。另一个挑战是,通常需要在非常高的声频下工作,尤其是对于小比例模型。由于使用比例模型产生的噪声频率与模型的大小成反比,这也对声学数据采集和分析系统的能力提出了挑战。
