摘要 由于大多数机器学习 (ML) 模型都是孤立地进行训练和评估的,因此我们对它们对现实世界中人类决策的影响知之甚少。我们的工作研究了这些部署的人机交互系统中如何产生有效的协作,特别是在不仅准确性而且偏差指标至关重要的任务上。我们训练了三种现有的语言模型(随机、词袋和最先进的深度神经网络),并在有和没有人类合作者的情况下在文本分类任务上评估它们的表现。我们的初步研究结果表明,虽然高精度 ML 提高了团队准确性,但它对偏差的影响似乎是特定于模型的,即使没有界面变化也是如此。我们将这些发现建立在认知和 HCI 文献的基础上,并提出了进一步发掘这种互动复杂性的方向。
为了响应这一行动号召,GE 航空开发了 T901-GE-900(以前称为 GE3000),作为美国陆军航空兵的下一代涡轴发动机解决方案。更大的功率、更高的效率和更低的成本是这一大胆计划的重点,它将为未来的士兵配备我们国家所能提供的最佳发动机。通过与 Apache 和黑鹰战斗机建立值得信赖的合作伙伴关系,GE 创造了一款发动机,它能够提供战斗所需的性能,而不会牺牲单轴核心设计的维护简便性。单轴核心架构一直是陆军航空兵的支柱,也是目前运行的所有陆军涡轴发动机的首选设计。通过应用行业领先、成熟的技术,T901 能够轻松与陆军现有的直升机集成,同时超越性能要求。
X、Y、Z、B、C、5轴控制、主轴控制:1轴 OSP全范围绝对位置反馈(无需原点返回) 机械坐标系(1套)、工件坐标系(20套) 8位小数、±99999.999~0.001mm、0.001˚ 小数:1µm、10µm、1mm(0.0001,1英寸)(1˚、0.01˚、0.001˚) 倍率:0~200% 直接主轴转速指令倍率30~300%、多点分度 注册刀具数:最多999套、刀具长度/半径补偿:每个刀具3套 15英寸彩色LCD+多点触摸面板操作 自动诊断和显示程序、操作、机械和NC系统故障 程序存储容量: 4 GB;操作备份容量:2 MB 程序管理、编辑、多任务、计划程序、固定循环、G/M 代码宏、算术、逻辑语句、数学函数、变量、分支命令、坐标计算、面积计算、坐标转换、编程帮助、夹具偏移 应用程序以图形方式可视化和数字化车间所需的信息 高度可靠的触摸屏,适合车间使用。一键访问套件应用程序。 “单一模式操作”完成一系列操作 高级操作面板/图形促进流畅的机器控制 MDI、手动(快速移动、手动切削进给、脉冲手柄)、负载计、操作帮助、报警帮助、顺序返回、手动中断/自动返回、脉冲手柄重叠、参数 I/O、PLC 监视器、对准补偿 机器
劳斯莱斯 250/RR300 型(涡轴发动机) 型号 T-O 单位/变体 功率等级 应用 机身 印度尼西亚航空航天 NBO-105 2 KAL 500D/MD 1 MBB BO 105 1 MD 直升机 500D/E 1 MBB BO 105 VBH; PAH-1 1 250-C20F 420 轴马力(313 千瓦) 欧洲直升机公司 AS 355 2 250-C20J 420 轴马力(313 千瓦) 贝尔直升机德事隆 206B-III JetRanger 1 贝尔直升机德事隆 TH-57 Sea Ranger 1 贝尔直升机德事隆 TH-67A Creek 1 250-C20R 450 轴马力(335 千瓦) 阿古斯塔 NH520N 2 贝尔直升机德事隆 206 LT Twin Ranger 2 贝尔直升机德事隆鹰眼 2 欧洲直升机公司 AS 355 2 250-C20R/1 450 轴马力(335 千瓦) 阿古斯塔 A109C; A109 C Max 2 250-C20R/2 450 轴马力(335 千瓦) 贝尔直升机德事隆 206B-III JetRanger 1 贝尔直升机德事隆 206L Long Ranger 1 卡莫夫 Ka-226 2 MD 直升机 500D/E 1 MD 直升机 520NOTAR 1 250-C20R/4 450 轴马力(335 千瓦) 贝尔直升机德事隆 206B III JetRanger 1 250-C20W 420 轴马力(313 千瓦) 恩斯特龙 480 1 施魏策尔 330/330SP;333; RQ-8A 1 250-C28B 500 轴马力(372 千瓦) 贝尔直升机 德事隆 206L-1 远程直升机 1 250-C28C 500 轴马力(372 千瓦) 欧洲直升机公司 BO 105LS 2 MD 直升机 530F 1 250-C30G/2 557 轴马力(415 千瓦) 贝尔 230 2 250-C30P 600 轴马力(447 千瓦) 贝尔直升机 德事隆 206L-III、IV 1 250-C40B 613 轴马力(457 千瓦) 贝尔直升机 德事隆 430 2 250-C47B 600 轴马力(447 千瓦) 贝尔直升机 德事隆 407 1 250-C47M 600 shp (447 kW) MD 直升机 600NOTAR 1 RR300 300 shp (223 kW) Robinson R66 1 价格范围。以下是 250 系列发动机的成本估算(以 2011 年美元计算):250-C20/28 系列,225,000-255,000 美元;C30/C40 系列,285,000-335,000 美元;T703 系列,300,000-325,000 美元。
名称 地址 位宽 R/W 功能 INFO 0x0D/0x0E 16 R 信息(0x0101) WIA 0x0F 8 R 我是谁(0x41) DATAX 0x10/0x11 16 R X 输出值 DATAY 0x12/0x13 16 R Y 输出值 DATAZ 0x14/0x15 16 R Z 输出值 STA1 0x18 8 R 状态1(DRDY) CNTL1 0x1B 8 R/W 控制设置1 CNTL2 0x1C 8 R/W 控制设置2 CNTL3 0x1D 8 R/W 控制设置3 PRET 0x30 8 R/W 预设时间 AVE_A 0x40 8 R/W 平均时间设置 CNTL4 0x5C/0x5D 16 R/W 控制设置4(LV复位释放) TEMP 0x60/0x61 16 R 温度值 OFF_X 0x6C/0x6D 16 R/W 偏移 X 值 OFF_Y 0x72/0x73 16 R/W 偏移 Y 值 OFF_Z 0x78/0x79 16 R/W 偏移 Z 值 FINEOUTPUTX 0x90/0x91 16 R 根据 OFFX 的 DATAX 值 FINEOUTPUTY 0x92/0x93 16 R 根据 OFFY 的 DATAY 值 FINEOUTPUTZ 0x94/0x95 16 R 根据 OFFZ 的 DATAZ 值 SENSX 0x96/0x97 16 R 灵敏度调整 X 值 SENSY 0x98/0x99 16 R 灵敏度调整 Y 值 SENSZ 0x9A/0x9B 16 R 灵敏度调整 Z 值GAIN_PARA_X 0x9C/0x9D 16 R 轴干扰 X 值 GAIN_PARA_Y 0x9E/0x9F 16 R 轴干扰 Y 值 GAIN_PARA_Z 0xA0/0xA1 16 R 轴干扰 Z 值 OFFZEROX 0xF8/0xF9 16 R 无磁场时偏移调整 X 值 OFFZEROY 0xFA/0xFB 16 R 无磁场时偏移调整 Y 值 OFFZEROZ 0xFC/0xFD 16 R 无磁场时偏移调整 Z 值
JC6000 坚固的操纵杆控制器专为非公路车辆和其他人机界面中要求严格的操作员控制应用而设计,这些应用注重强度、可靠性和手柄功能。该操纵杆有单轴或双轴配置,可配备非接触式霍尔效应传感器或长寿命电位器轨道。JC6000 体积小、杠杆强度高、比例控制出色,非常适合包括起重机、装载机、挖掘机、检修平台、拖拉机和收割机等各种非公路车辆的操作员控制应用。
描述 876XA... 型是一种 IEPE(集成电子压电)三轴加速度计,专为高温应用而设计。876XA... 型加速度计使用 Kistler 的 PiezoStar 剪切元件设计,可提供宽工作频率范围和极低的温度变化灵敏度(请参阅第 3 页的灵敏度偏差图)。IEPE 传感器结合了 Pi- ezoStar 晶体和高增益积分混合微电子元件,与其他传感元件设计相比,可在整个工作温度范围内实现非常低的灵敏度变化。Kistler 剪切元件技术还可确保高度的抗基础应变误差能力。加速度计使用焊接钛结构以实现低质量和行业标准 4 针连接器,以及微型 4 针连接器以实现更轻的质量和更宽的频率操作。一体式硅胶电缆选项可用于高达 16 bar 的防水振动测试。所有变化均提供可靠的测量和长期稳定性,特别是在较高的工作温度下。
。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。高Q超级导电遣返器,并将其视为由假设的轴突ole介导的逐灯散射的检测器。量子电动力学:Euler -Heisenberg(EH)相互作用。光子频率和模式转换对于检测这种罕见的E V的方案至关重要。超级传导遣返器的非导纳设备。将电磁场限制在超导RF腔的真空区域的Meissner scr频率是EM场在真空– Superpocducducductionfucting界面处的非线性函数,因此可以产生CAV-ITY中微型光照射子的频率转换。在本报告中,我们考虑了具有高质量因子的光子频率和模式转换,该谐振器具有高质量的因子,来自Meissner电流的单个和双腔内电流中的高质量因素,该谐振器提出了基于光线散射的轴和QED搜索。在具有两个泵模式的单个腔中,Meissner筛选的光子频率转换率在Q≲1012的腔中通过EH相互作用来主导光子的产生。Meissner电流还生成背景光子,以限制三模式单腔设置中的轴轴检测的操作。我们还考虑将光子从泵模式泄漏到轴和EH介导的光线散射的信号模式中。EH相互作用通过EH相互作用的光子频率转换可以与Meissner竞争,并在超高Q型腔中的泄漏辐射和泄漏辐射范围内,这超出了当前最新技术状态。Meissner辐射和泄漏背景可以在双腔设置中抑制具有适当选择的泵和观众模式的选择,以及针对杂差检测银河系轴线暗物质的单腔设置。
本文回顾了肠道菌群对通过控制肠脑轴调节神经退行性疾病的影响。特定的微生物种群及其代谢产物(短链脂肪酸和色氨酸衍生物)调节神经蛋白膨胀,神经发生和神经屏障完整性。然后,我们讨论这些洞察力导致可能的干预措施的方法 - 益生菌,益生元,饮食改良和粪便微生物群移植(FMT)。我们还描述了哪些流行病学和临床研究已将某些微生物群与神经退行性疾病的课程相关联,以及这些如何影响基于微生物组的诊断和个性化治疗方案的建立。我们旨在指导与神经退行性疾病的关键联系的微生物生态研究,并通过针对微生物组相关的因素来强调管理神经健康健康的协作方法。
测试焦虑(TA)是一种公认的社交焦虑形式,是学生焦虑的最突出的原因,如果不受管理,可以升级为精神疾病。ta深刻影响中心神经系统和自主神经系统,作为认知和自主成分的双重表现。有限的研究探索了TA的生理基础,但在这种情况下,没有人直接研究了中枢神经系统与ANS之间的复杂相互作用。在这项研究中,我们引入了一种非侵入性的,综合的神经性心血管方法,以全面地表征27名通过模拟检查场景引起的测试焦虑的健康受试者的生理反应。我们的实验发现强调,对脑电图和心率变异性数据的孤立分析无法捕获由大脑心脏轴评估提供的复杂的信息,该信息纳入了对大脑与心脏之间动态相互作用的分析。在静息状态下,模拟检查在所有频率下都会导致神经控制降低到心跳动力学上,而研究状况会导致脑力振荡的上升心脏相互作用降低,高达12Hz。这强调了采用多系统观点的重要性,以理解与测试焦虑的复杂,尤其是功能定向机制。