蛋白尿与肾移植受者(KTRS)中同种异体移植和患者存活率的减少有关(1,2)。在钙调神经磷酸酶抑制剂上的KTR中,优化阻断肾素 - 血管紧张素 - 醛固酮系统(RAAS)的药物通常受到不良反应(例如高钾血症)的限制(3,4)。此外,没有随机对照试验研究了KTR中SGLT-2抑制剂的抗蛋白尿作用。因此,需要其他策略来减少蛋白尿中的蛋白尿和延长同种异体移植的存活。在患有足细胞病的患者和肾小球肾炎的患者中,钙调神经蛋白抑制剂(CNIS)通过免疫和非免疫作用降低蛋白尿,例如血管收缩和足细胞稳定作用(5)。另一方面,它们还可以通过多种机制引起蛋白尿,包括管状损伤,血栓性微血管病和肾小球硬化症(6-9)。- CNIS还可以通过氧化应激和血管收缩损害内皮功能,进一步导致肾小球损伤和蛋白尿。相比之下,Belatacept不具有这些血管活性特性,可能支持更健康的内皮和降低的蛋白尿。一些临床前研究假定了共刺激阻塞的抗蛋白尿作用(10,11)。在蛋白尿KTR的回顾性队列中,CNIS的BELATACEPT转化或雷帕霉素(MTOR)抑制剂的哺乳动物靶标与转化后12个月的蛋白尿降低有关(7)。但是,这没有
遗传性血管性水肿(HAE)是一种罕见的遗传疾病,会导致发作性皮肤和粘膜下肿胀,主要影响四肢,面部,胃肠道和上呼吸道(1)。HAE的最常见形式是由于血浆Kallikrein(PK)的主要抑制剂(PK)的主要抑制剂以及接触激活途径中血浆Kallikrein(PK)的主要抑制剂和激活的凝结因子XII所致。pk从高分子量激素(HMWK)中裂解血管活性肽的心动激肽,因此其阴性调节剂的丧失会导致头肌激素过度肿胀,后来受影响的患者肿胀(2)。长期预防(LTP)预防血管性水肿发作是当前HAE管理的基石。随着现代高效的LTP疗法的出现,治疗的目的已成为完全控制的疾病控制和患者生活的正常化(3)。 2019年国际/加拿大HAE指南建议将静脉或皮下等离子体衍生的C1抑制剂(PD-C1)或靶向PK的LANADelumab作为第一个LTP LTP代理(4)。 berotralstat是一种使用结构引导设计开发的合成小分子以抑制PK(5)。 这是一种口服的可生物利用药物,与PK丝氨酸蛋白酶结构域的活性位点结合,从而防止HMWK裂解。 在2021年,第3阶段的APEX-2研究表明,BerotralStat将血管性水肿发作的平均频率降低了44%,其中一半的患者接受了150 mg剂量的攻击频率降低了约70%(6)。 Berotralstat在2022年获得了加拿大监管批准。随着现代高效的LTP疗法的出现,治疗的目的已成为完全控制的疾病控制和患者生活的正常化(3)。2019年国际/加拿大HAE指南建议将静脉或皮下等离子体衍生的C1抑制剂(PD-C1)或靶向PK的LANADelumab作为第一个LTP LTP代理(4)。berotralstat是一种使用结构引导设计开发的合成小分子以抑制PK(5)。这是一种口服的可生物利用药物,与PK丝氨酸蛋白酶结构域的活性位点结合,从而防止HMWK裂解。在2021年,第3阶段的APEX-2研究表明,BerotralStat将血管性水肿发作的平均频率降低了44%,其中一半的患者接受了150 mg剂量的攻击频率降低了约70%(6)。Berotralstat在2022年获得了加拿大监管批准。最常见的治疗急性不良事件是胃肠道(GI)的副作用,例如腹痛,腹泻和腹泻。在此,我们描述了加拿大berotralstat使用的第一个现实研究。
当今大多数产品都具有多个功能,但是这些功能是通过在系统中整合不同的单功能设备和/或材料来实现的。在一种单个材料中同时具有多个功能具有许多潜在的优势,例如一种可以存储能量,具有自感应或自我修复能力或任何其他身体功能的结构材料。这将带来质量和资源节省,使能源更高,因此更可持续。本文介绍了如何使用碳纤维的电气和电化学性质在高性能载荷中同时使用碳纤维来进行碳纤维的微型审查。通过该碳纤维复合材料还可以存储像锂离子电池一样的能量,用作应变传感器,具有电气控制的致动和形状,并用作能量收割机。
糖尿病是一个日益增长的公共卫生问题,其医疗保健成本和发病率很高。根据国际糖尿病联合会(IDF)报告的数据,中国的糖尿病患者数量最多,估计有1.41亿成年人在2021年患有该疾病,预计到2045年(1)到2045年。糖尿病微血管并发症是糖尿病最常见的并发症,主要是糖尿病肾脏疾病和糖尿病性视网膜病。糖尿病性肾脏疾病(DKD)是全球慢性肾脏疾病(CKD)和末期肾脏疾病(ESRD)的最常见原因,导致巨大的劳动和社会成本(2,3)。蛋白尿和肾功能降低是糖尿病患者DKD的显着临床病理特征(4)。典型的病理特征包括内皮细胞功能受损,足细胞疾病,肾小球肾小球膨胀,地下膜增厚,管状硬化症和管状间隙纤维化(5)。纤维化,氧化应激和凋亡是DKD肾损伤病理生理学的主要因素(6)。糖尿病性视网膜病是糖尿病患者失明的主要原因,进一步分为非增殖性视网膜病(NPDR)和增殖性视网膜病(PDR)。糖尿病性视网膜病是由代谢异常引起的(7)。典型的病理生理学包括视网膜毛细血管基底膜增厚,血管通透性增加,组织缺血的各种血管活性物质和新血管形成(8)。甲状腺功能减退症的诊断取决于血清TSH水平升高。NPDR通常以微型神经瘤形成和视网膜血管的较小扩张为特征,而PDR的特征是新生血管的特征。甲状腺功能减退症是由甲状腺功能减退症或甲状腺激素耐药的各种原因引起的一种全身性低代谢综合征(9)。病理学的特征是粘多糖在组织和皮肤中的积累,这表现为粘液水肿。甲状腺功能减退症的主要原因是自身免疫性障碍,甲状腺破坏,碘过量和使用抗甲状腺药物。甲状腺功能减退症通过增加心外膜血管渗透性和降低白蛋白淋巴引流而导致心包积液,从而导致心包腔中积液(10)。甲状腺功能减退症的治疗旨在恢复正常的甲状腺功能。甲状腺功能障碍(TD)和糖尿病(DM)是具有不同
在单个胎盘中,在体内人胎盘灌注中显示胎儿与母性肽浓度比为≤0.017。liraglutide(GLP1激动剂)在人类研究中至少3.5小时后至少3.5小时,在人类研究中至少有一个受试者的胎儿转移。在动物研究中,GLP-1激动剂在母乳中排泄。人类有关排泄的数据不可用。在动物研究中,SGLT2抑制剂通常在三个月期间是安全的,但是在产后第21至90天,在少年大鼠中暴露,这是与人类肾脏发育的第二和第三三个月相吻合的时期,导致肾骨盆和小管的扩张。人类数据由SGLT2抑制剂使用过程中无意中妊娠的药物数据库组成,发现流产和先天性畸形的增加。在动物研究中, SGLT2抑制剂在母乳中排泄并影响新生儿生长,但人类数据尚无。SGLT2抑制剂在母乳中排泄并影响新生儿生长,但人类数据尚无。
1型糖尿病(T1D)是一种自身免疫性疾病,其特征是胰腺中产生胰岛素的B细胞。这种破坏会导致慢性高血糖,因此需要终身胰岛素治疗来管理血糖水平。通常在儿童和年轻人中被诊断出,T1D可以在任何年龄段发生。正在进行的研究旨在揭示T1D潜在的确切机制并开发潜在的干预措施。其中包括调节免疫系统,再生B细胞并创建高级胰岛素输送系统的努力。新兴疗法,例如闭环胰岛素泵,干细胞衍生的B细胞替代和疾病改良疗法(DMTS),为改善T1D患者的生活质量并有潜在地朝着治疗方向前进。目前,尚未批准用于第3阶段T1D的疾病改良疗法。在第3阶段中保留B -cell功能与更好的临床结局有关,包括较低的HBA1C和降低低血糖,神经病和视网膜病的风险。肿瘤坏死因子α(TNF-A)抑制剂在三阶段T1D患者的两项临床试验中,通过测量C肽来保存B细胞功能,证明了效率。然而,在T1D的关键试验中尚未评估TNF-A抑制剂。解决T1D中TNF-A抑制剂的有希望的临床发现,突破T1D召集了一个主要意见领导者(KOLS)的小组。研讨会
收集了有关2697种有机化学物质的水生生态毒理学的经验数据和计算机数据,以编译数据集,以评估当前质量结构活动关系(QSAR)模型和软件平台的预测能力。本文档为其创建提供了数据集及其数据管道。经验数据是从美国EPA Ecotox知识库(Ecotox)和EFSA(欧洲食品安全局)收集的,报告“ XML模式中的农药生态毒性学层的数据输入研究终点 - 数据库 - 数据库中”。仅保留了经合组织建议的藻类,水坝和鱼类的数据。使用Ecosar,Vega和Tox-Icity估计软件工具(T.E.S.T.)计算每种化学物质和六个端点中的QSAR毒性预测平台。最后,数据集用微笑,Inchikey,PKA和LOGP修改,从Webchem和PubChem收集。©2023作者。由Elsevier Inc.出版这是CC下的开放式访问文章(http://creativecommons.org/licenses/4.0/)
一项生命实验室科学,KTH-瑞典B皇家技术研究院,瑞典B皇家技术学院,B北部大学,450001,亨南省郑州大学教育部,郑州大学教育部高级药物准备技术的主要实验室瑞典d Atat€Urk大学医学院医学药理学系,25240年,Erzurum,土耳其E e e e Erzurum E,兽医学系,兽医学院,阿塔图尔克大学,Erzurum,25240,土耳其,土耳其F,Firke Intralies,Erzurum Truncator,25200 er er turkey Erlime groum groum,Turkey groum,Turkey gokurum,Turke ful ful Fir Full Full Full Full Full Full Full Full Fire Ercult and Genetics,伊斯坦布尔,土耳其H伊斯坦布尔,夏尔默斯技术大学,哥德堡,哥德堡I大学,瑞典I医学生物学系,医学系,阿塔特·欧克大学,土耳其Erzurum,土耳其Erzurum,Turkey j ost-microbiome互动中心一项生命实验室科学,KTH-瑞典B皇家技术研究院,瑞典B皇家技术学院,B北部大学,450001,亨南省郑州大学教育部,郑州大学教育部高级药物准备技术的主要实验室瑞典d Atat€Urk大学医学院医学药理学系,25240年,Erzurum,土耳其E e e e Erzurum E,兽医学系,兽医学院,阿塔图尔克大学,Erzurum,25240,土耳其,土耳其F,Firke Intralies,Erzurum Truncator,25200 er er turkey Erlime groum groum,Turkey groum,Turkey gokurum,Turke ful ful Fir Full Full Full Full Full Full Full Full Fire Ercult and Genetics,伊斯坦布尔,土耳其H伊斯坦布尔,夏尔默斯技术大学,哥德堡,哥德堡I大学,瑞典I医学生物学系,医学系,阿塔特·欧克大学,土耳其Erzurum,土耳其Erzurum,Turkey j ost-microbiome互动中心
请按以下方式引用本文:Longo, F., Nicoletti, L., & Padovano, A.(2019)。无处不在的知识为智能工厂赋能:面向服务的数字孪生对企业绩效的影响。年度控制评论,第47,页221-236。DOI:https://doi.org/10.1016/j.arcontrol.2019.01.001。
如今,由于可再生能源(RESS)和车辆电气化的整合增加,因此本地分销网格一直面临技术,经济和监管挑战。 电网扩展的传统解决方案,例如建立额外的电力线,是以公用事业为中心的解决方案,即分销网格运营商(DSOS)是唯一涉及解决网格问题的方。 DSO必须与电网用户与技术提供商联系,以开发创新的解决方案来解决一个问题并具有成本效益。 本文提出了一种整体解决方案,可在相互连接的微电网(MGS)之间进行最佳控制跨部门的能量流,该微电网(MGS)由不同的Ress,水力发电厂(HPP)和风tur bines(WTS)组成,以满足电动汽车(EVS),居住,商业和工业需求,并提供主要网格的贡献。 此问题将提供基于社区的MGS在本地能源交易中的优势,这会导致活跃和参与的系统,但是,需要适当的控制策略。 提出的解决方案是基于两个MG之间的新互连线,通过多托转换器(MPC),对新安装的组件(例如MPC,电缆和所需的电池储能系统(BESS))的技术经济考虑考虑。 在三种不同条件下评估了拟议的案例研究,例如,载荷增量,需求响应(DR)和N-1标准在单独的互连和岛模式下。 使用GAMS软件的CPLEX求解器用于求解混合组的线性编程模型。如今,由于可再生能源(RESS)和车辆电气化的整合增加,因此本地分销网格一直面临技术,经济和监管挑战。电网扩展的传统解决方案,例如建立额外的电力线,是以公用事业为中心的解决方案,即分销网格运营商(DSOS)是唯一涉及解决网格问题的方。DSO必须与电网用户与技术提供商联系,以开发创新的解决方案来解决一个问题并具有成本效益。本文提出了一种整体解决方案,可在相互连接的微电网(MGS)之间进行最佳控制跨部门的能量流,该微电网(MGS)由不同的Ress,水力发电厂(HPP)和风tur bines(WTS)组成,以满足电动汽车(EVS),居住,商业和工业需求,并提供主要网格的贡献。此问题将提供基于社区的MGS在本地能源交易中的优势,这会导致活跃和参与的系统,但是,需要适当的控制策略。提出的解决方案是基于两个MG之间的新互连线,通过多托转换器(MPC),对新安装的组件(例如MPC,电缆和所需的电池储能系统(BESS))的技术经济考虑考虑。在三种不同条件下评估了拟议的案例研究,例如,载荷增量,需求响应(DR)和N-1标准在单独的互连和岛模式下。使用GAMS软件的CPLEX求解器用于求解混合组的线性编程模型。结果表明,与分离的操作模式相比,MGS的应用互连线可以降低系统的总成本,将所应用的峰降低到上游网格中,并在不同条件下增强系统的依赖能力。此外,应用的解决方案即使在不同条件下(24小时)在岛模式下(24小时)也提供了MGS操作的能力。