到目前为止,已经实施了两个主要版本的 T1RESS。一个版本,我们称之为“平衡” T1RESS(bT1RESS),使用完全平衡的 SSFP 读数,因此具有原生的亮血对比度。第二个“不平衡”版本(uT1RESS)使用不平衡的 SSFP 读数,从而抑制基于血流依赖性失相的血管信号。为了测试 T1RESS 对脑肿瘤的诊断性能,我们进行了一项概念验证研究,该研究已获医院机构审查委员会的批准。在 54 名疑似或已知患有脑肿瘤的成年受试者中,以 3 特斯拉(MAGNETOM Skyra 和 MAGNETOM Skyra fit,西门子医疗,德国埃尔兰根)进行了脑部增强 MRI 检查。静脉注射 0.1 mmol/kg 钆布醇(拜耳,德国柏林),然后进行标准护理序列,之后进行额外的对比后扫描,包括平衡和不平衡 T1RESS 以及 3D FLASH 和/或磁化准备的快速采集梯度回波 (MPRAGE)。对于 bT1RESS 和 uT1RESS,数据均使用笛卡尔 3D k 空间轨迹沿相位编码方向单次发射采集,而采集则沿 3D 分区编码方向分段。对于这两种版本的 T1RESS,定期应用对比度调节 RF 脉冲对于产生 T1 对比度和抑制脑脊液和软组织水肿的信号强度至关重要。在对比增强的平衡阶段,亮血 bT1RESS 在创建颅内血管造影渲染方面表现明显优于 3D FLASH 和 MPRAGE(图 2),而使用 uT1RESS 时血管看起来很暗。
完整作者列表:Rodriguez-Hernandez,Beatriz;基尔梅斯国立大学、CONICET、科学技术系 Oldani、A;基尔梅斯国立大学、CONICET、科学技术系 Martinez-Mesa、Aliezer;哈瓦那大学,DynAMoS(原子和分子系统中的动态过程),物理学院;基尔梅斯国立大学、CONICET、乌干达-皮纳科技部、Llinersy;哈瓦那大学,DynAMoS(原子和分子系统中的动态过程),物理学院;基尔梅斯国立大学、CONICET、科学技术系 Tretiak,Sergei;洛斯阿拉莫斯国家实验室,理论部 Fernandez-Alberti,Sebastian;基尔梅斯国立大学、CONICET、科学技术系
[6] C. Guo, J. Xu, D. Rocca 和 Y. Ping, Phys. Rev. B 102, 205113, (2020)。[7] F. Wu, D. Rocca 和 Y. Ping, J. Mater. Chem. C, 7, 12891 (2019)。[8] F. Wu, TJ Smart 和 Y. Ping, Phys. Rev. B, 100, 081407(R) (2019)。[9] Y. Ping 和 TJ Smart, Nat. Comput. Sci., 1, 646, (2021) [10] K. Li, TJ Smart, Y. Ping, Phys. Rev. Mater (Letter), 6, L042201, (2022) [11] S. Zhang, K. Li, C. Guo, 和 Y. Ping, 2D Materials, 正在印刷, (2023) arxiv.org/abs/2304.05612
一种提供更准确的癌症检测的技术将具有很大的价值。为此,我们开发了T1弛豫增强的稳态(T 1 RES),这是一种新型的磁共振成像(MRI)脉冲序列,可实现T1加权的柔性调制,并提供了独特的特征,在相反增强体验的扫描中,可以在和关闭体血管内信号。t 1 ress可以有效地使用具有提高信噪比效率的MRI技术来进行癌症成像。与标准技术相比,在一项概念验证研究中,“黑血”不平衡的T 1 ress可对肿瘤到脑的对比度有两倍的改善,而平衡的T 1 ress大大增强了血管细节。总而言之,T 1 Ress代表了一种新的MRI技术,具有癌症成像的巨大潜在值,以及其他广泛的临床应用。
图 2. 脉冲 EPR 回波检测场扫描 (EDFS) 的模拟取向依赖性。(A) 四方 Cu(II) 复合物的平行和垂直取向定义。(B) 模拟 Cu(II) EDFS 和组成超精细 m I 流形的取向依赖性,自旋哈密顿参数 g ∥ = 2.0912、g " = 2.0218、A ∥ = −500.1 MHz ( − 166.8 × 10 -4 cm -1 )、A " = −116.9 MHz ( − 39.0 × 10 -4 cm -1 )、ν = 9.7 GHz,取自实验 [Cu(mnt) 2 ] 2- CW EPR 光谱的拟合结果。 (C)模拟的 V(IV) EDFS 和自旋哈密顿参数 g ∥ = 1.9650、g " = 1.9863、A ∥ = −478.0 MHz ( − 159.4 × 10 -4 cm -1 )、A " = −167.8 MHz ( − 55.9 × 10 -4 cm -1 )、ν = 9.7 GHz 的方向依赖性,取自实验 VOPc CW EPR 光谱的拟合结果。黑色实线箭头表示 EDFS 中的纯平行方向,而红色实线箭头表示纯垂直方向。
摘要:分子复合物通常会对构象状态进行取样,从而引导它们发挥特定功能。这些状态可能难以通过传统的生物物理方法观察到,但可以使用各种不同的 NMR 自旋弛豫实验进行研究。然而,当这些应用集中在中高分子量蛋白质上时,快速弛豫信号会使其变得复杂,从而对光谱的灵敏度和分辨率产生负面影响。本文介绍了一种基于甲基 1 H CPMG 的实验,用于研究蛋白质机器的激发构象状态,该实验利用 TROSY 效应来增加信噪比。解决甲基 1 H 跃迁的多样性带来的复杂性,以生成一个强大的脉冲方案,该方案适用于 320 kDa 稳态蛋白 p97。人们越来越认识到,生物分子的运动特性对于功能至关重要,因此有必要关注动力学,以了解这些分子如何在健康和疾病中执行其许多不同的任务。 [1] 细胞的分子机器尤其如此,它们由不同的组件组成,这些组件的相对运动是经过精心设计的,可以进行正常的活动。原则上,溶液核磁共振波谱是研究这些动力学的有效方法,[2] 即使在总分子量接近 1 MDa 的系统中也是如此,只要能够在整个蛋白质复合物中用 13 CH 3 标记关键含甲基氨基酸获得高度氘化的粒子。[3] 在这种情况下,可以利用丰富的甲基内偶极相互作用网络 [4] 通过甲基-TROSY 效应生成高质量的 1 H– 13 C HMQC 数据集,其中 50% 的信号来自磁化转移途径,从而最大限度地减少弛豫损失。[3a] 定量运动的实验
摘要:偶极耦合很少被用作镧系元素单分子磁体中缓慢弛豫动力学的驱动力,尽管它通常是介导此类物质中离子间磁相互作用的最强机制。事实上,对于多核镧系元素复合物,由于它们能够形成高度定向、高矩基态,偶极相互作用的幅度和各向异性可能相当大。本文我们提出了单核、双核和三核铒基单分子磁体序列 ([Er −TiPS 2 COT] + ) 𝑛 (𝑛= 1 −3),其中磁弛豫路径允许性的大幅降低在角动量量子之间的偶极-偶极相互作用框架内得到合理化。由此产生的多核分子磁性设计原理源于高度各向异性磁态之间的分子内偶极耦合相互作用,为单个量化跃迁的复杂流形中的弛豫动力学提供了细致入微的证明。通过将弛豫动力学与分子磁性前所未有的频率范围(10 3 −10 −5 Hz)的交流磁场相结合,为该模型的有效性提供了实验证据。缓慢的动力学和多个低能跃迁的结合导致了许多值得注意的现象,包括在单一温度下可观察到三个明确定义的弛豫过程的镧系单分子磁体。
主动控制固态系统中的自旋自由度是自旋电子学的最终目标。高效自旋电子器件设计中的一个基本量是自旋弛豫寿命。该参数是电子自旋进动(Dyakonov-Perel 机制)和自旋翻转(Elliot-Yafet)动力学的描述符。该项目的目的是开发计算工具,从第一原理模拟这些自旋弛豫机制。计算将基于密度泛函理论,结合更先进的多体方法,以解释杂质和声子对电子的散射。鉴于自旋弛豫事件是相对论自旋轨道相互作用的结果,拓扑和二维材料自然而然地成为有前途的研究对象。
在本研究中,通过高能球磨和热处理制备无铅BATI BATI 1-X ZR X O 3(对于X = 0、0.05和0.15)陶瓷。所执行的X射线,SEM和EDS测量结果证实了所获得的样品的高纯度,高质量和预期的定量组成。介电性能的研究是通过宽带二射流光谱在0.1 Hz至10 MHz的频率下进行的。根据Arrhenius形式主义分析所获得的测量数据证明了存在弛豫型介电机制。研究的陶瓷材料的阻抗答案表明存在两个弛豫过程:一个具有显性电阻分量,另一个具有较小的电容分量。观察到的介电弛豫过程取决于温度,并且具有“非debye”特征。关键字:Batio 3,机械化学合成,X射线方法,介电特性
展示了基于 SiC 原子级自旋中心能级交叉弛豫的全光学测温技术。该技术利用了三重基态 S=1 中心零场分裂的巨大热位移,光致发光无法检测到(所谓的“暗”中心)耦合到相邻的自旋 3/2 中心,这些中心可以进行光学极化和读出(“亮”中心),并且不需要射频场。EPR 用于识别缺陷。交叉弛豫线的宽度几乎比全光学测温中使用的激发态能级反交叉线的宽度小一个数量级,并且由于由激发态的寿命决定,因此无法显着减小。由于温度偏移和信号强度与激发态能级反交叉大致相同,交叉弛豫信号可以将温度测量的灵敏度提高一个数量级以上。温度灵敏度估计约为 10 mK/Hz^1/2,体积约为 1 μm^3,由扫描共聚焦显微镜中的聚焦激光激发决定。利用“亮”自旋-3/2 中心和“暗”S=1 中心基态中的交叉弛豫进行温度传感,利用“亮”自旋-3/2 中心基态水平反交叉,可以使用相同的自旋系统实现具有亚微米空间分辨率的集成磁场和温度传感器。
