近年来,氮化镓 (GaN) 基高电子迁移率晶体管 (HEMT) 因其在降低开关损耗、维持高击穿电压以及保持高温稳定性方面所表现出的卓越性能,其商业化进程不断加快 [1,2]。大尺寸 Si 衬底上 GaN 外延生长技术的进步降低了生产成本。同时,Si 上的 HEMT 器件可以轻松集成到现有的 Si 铸造厂中 [4-6]。上述优势使 GaN 基 HEMT 器件更接近大众市场应用。阻挡层是 HEMT 器件中的关键元件之一,它决定了导电通道的电阻。AlGaN 是最常用的阻挡材料。在 AlGaN / GaN 界面区域形成的二维电子气 (2DEG) 表现出良好的稳定性、低的薄层电阻、高的载流子密度和高的电子迁移率 [7,8]。由于在 AlN / GaN 界面区域形成了更高的 2DEG 密度,AlN 作为阻挡层材料也引起了人们的关注 [9]。据报道,薄层电阻 (Rs) 值低至 128 Ω/sq,2DEG 密度为 3.21 × 10 13 / cm 2 [10]。此外,在 AlN 系统中可以避免合金散射,从而提高 2DEG 霍尔迁移率 [11,12]。已经证明了基于 AlN 阻挡层的 HEMT 器件具有低栅极漏电和高 I on / I off 比 [13]。表 1 总结了最近对具有最佳 Rs 性能的 AlN / GaN 异质结构的研究。然而,由于 AlN 与 GaN 沟道层的晶格失配较大 (2.5%),因此 AlN 的弛豫是一个主要挑战。氮化硅 (SiN x ) 帽层已被用作表面钝化层,以避免/减少 AlN 弛豫 [ 14 ] 。然而,钝化帽层的成分和厚度对抑制弛豫的影响很少被研究。在本文中,我们报告了包含原位生长的 GaN 和/或 SiN x 帽层的 AlN/GaN 异质结构的长期 2DEG 稳定性。
图4显示了各种温度的移位因子(log a t)计算的对数与相互温度1/t的关系。(使用上面的公式3计算移位因子。)这是Arrhenius图的一个例子,其中梯度是弛豫事件的激活能(在这种情况下玻璃转变)。PMMA T g的活化能计算为382.9 kJ/mol。另外,在这种情况下,只有一行。这意味着PMMA的主要分散是由于单个事件,即玻璃过渡。并非总是如此,如图5所示。
K29.002:超导量子材料与系统 (SQMS) – 新的 DOE 国家量子信息科学研究中心 M41.009:可调 transmon 量子比特的长期尺度能量弛豫动力学作为损耗计量工具 N27.006:超导量子材料与系统 (SQMS) 研究中心的量子信息科学生态系统工作 N51.004:方八边形晶格上 Kitaev 自旋模型的非线性响应*
致谢。这项工作得到了俄罗斯科学基金会的支持(赠款号18-19-00255,https://rscf.ru/en/project/21-19-28039/)。引用:Ignateva EV,Krasnitckii SA,Sheinerman AG,Gutkin MY。复合陶瓷中裂纹耐受性的有限元分析。材料物理和力学。2023; 51(2):21-26。doi:10.18149/mpm.5122023_2。引言具有较少脆性的陶瓷材料的开发是材料科学研究的极大兴趣,尤其是在获得具有增强功能性能的有前途的复合材料的方式上,可在操作条件下提供耐用性和可靠性[1-4]。这些材料可以通过用高级化合物(例如石墨烯[5,6]烧结陶瓷粉末来制造。由于该过程的技术参数,生产的材料可能包含大部分界面不均匀性,主要位于晶界(GBS)[7]。在操作条件下,这些不均匀性是由外场的影响(热,电或磁性)引起的应力障碍的起源,可以引起弛豫过程,即脱位发射或裂纹成核[8-11]。第一种机制主要有助于塑性变形(屈服)现象,而第二种机制则是导致获得的陶瓷复合材料的脆性断裂。对任何一种松弛机制的发生分析被认为是一个重要的问题,可以通过对界面不均匀性附近的应力障碍进行彻底研究以及随后发展弛豫过程的理论模型的发展,以增加陶瓷材料的裂缝抗性。
当二维范德华材料被堆叠以构建异质结构时,Moir'E模式从扭曲的界面或单个层的晶格常数中的不匹配出现。放松原子位置是Moir'e模式的直接,通用的后果,对物理特性具有许多影响。moir´e驱动的原子放松可能被天真地认为仅限于界面层,因此与多层异质结构无关。但是,我们提供了两种类型的范德华异质结构的三维性质的重要性的实验证据:首先,在多层石墨烯中以小扭曲角(θ≈0。14°),我们观察到弛豫结构域的传播甚至超过18个石墨烯层。第二,我们展示了如何在BI 2 SE 3上使用多层PDTE 2,Moir´e晶格常数取决于PDTE 2层的数量。以实验发现的启发,我们开发了一种连续方法,以基于Ab Initi拟示的广义堆叠断层能量功能对多层弛豫过程进行建模。利用该方法的连续性属性使我们能够访问大规模的制度并与我们在这两个系统的实验数据达成协议。此外,众所周知,石墨烯的电子结构敏感取决于局部晶格变形。因此,我们研究了多层松弛对扭曲石墨系统状态局部密度的影响。我们确定对系统的可测量含义,通过扫描隧道显微镜在实验上访问。我们的多层松弛方法不限于讨论的系统,可以用来发现界面缺陷对各种层次感兴趣系统的影响。
实施5G毫米波(MM-WAVE)无线网络需要重新设计RF前端组件(例如天线,过滤器和放大器),以便它们可以比前几代更高的频率操作[1]。这些设备通常是使用介电底物材料和金属导体制造的,需要在新的频带上表征这些设备。5G应用的介电常数和低损失的材料[2]是可取的。较低的介电构造可以通过基板更快地信号传播,从而允许更高的数据速率和较低的延迟。此外,低损耗切线有助于补偿MM波频率上本质上较高的衰减,从而确保通过设备可接受的传播损失[3],[4]。然而,材料的介电特性表现出由固有的松弛机制引起的频率依赖性。这些原子尺度过程会导致跨电磁频谱的共振峰和分散效应。在固体材料中,分子偶极子的偶极弛豫倾向于在MHz频率中发生,而在THZ区域中发现了晶格离子的振动共振[5],[6]。与5G设备相关的GHz范围中的介电行为位于中间区域,该区域可能分别受到MHz和THz频率的偶极和离子弛豫的尾巴的影响。因此,准确的宽带特征对于完全捕获这些基本物理过程引起的介电特性的频率变化至关重要。仅测量低频响应可能会提供材料适合5G应用的不完整图片。但是,已发表的研究有限
摘要:我们在此报告了对酞菁氧钒 (VOPc) 的磁弛豫和量子相干性的研究,VOPc 是一种多功能且易于处理的潜在分子自旋量子比特。通过一种基于交流 (AC) 磁化率测定法、连续波 (CW) 和脉冲电子顺磁共振 (EPR) 光谱相结合的新兴多技术方法,研究了纯态 VOPc ( 1 ) 及其在同结构抗磁性宿主 TiOPc 中的晶体分散体,这些 VOPc 的化学计量比不同,即 VOPc:TiOPc 1:10 ( 2 ) 和 1:1000 ( 3 )。交流磁化率测量表明,在高达 20 K 的温度下,弛豫速率呈线性增加,这与直接机制的预期一致,但在施加的静态场值(高达约 5 T)的很宽范围内, 仍然很慢。对 3 进行的脉冲 EPR 光谱实验表明,在室温下仍具有量子相干性,T m 在 300 K 时约为 1 s,这是迄今为止分子电子自旋量子比特获得的最高值。在室温下,在这种核自旋活性环境( 1 H 和 14 N 核)中也观察到了 2 的拉比振荡,这表明这种分子半导体中量子相干性的突出稳定性,可用于自旋电子器件。
对用三价和非磁性离子取代的 NBBT 二元弛豫复合材料的光学和介电性能的贡献,材料化学与物理 (2023),294,127045 5. G.Sudha、P.Elaiyaraja、N.Karunagaran,用于多功能设备应用的新型 Sm 3+ 和三氧化钨掺杂 NBBT 陶瓷体系的结构、发光和介电性能之间的相关性,材料科学杂志:电子材料 (2022),33 (34),25532-25550 6. SG Rejith、G Sudha,对镉的结构和光学性质的研究
幽门螺杆菌的惊人特征之一是临床分离株之间广泛的遗传多样性。这种多样性归因于突变率升高,DNA修复受损,DNA转移和频繁重组事件。质粒也已在幽门螺杆菌中鉴定出来,但尚不清楚连接是否可以导致临床分离株之间的DNA转移。检查幽门螺杆菌是否具有共轭质粒转移的固有能力,将穿梭载体引入了幽门螺杆菌中,其中含有含有共轭Incp质粒质粒RP4的原始序列,但没有动员(MOB)基因。表明,这些载体可以稳定复制并在幽门螺杆菌菌株中动员。还证明,幽门螺杆菌染色体上携带的trag和弛豫酶(RLX)同源物对于质粒转移至关重要。引物扩展研究和诱变进一步证实了幽门螺杆菌中的弛豫酶同源物RLX1编码能够在RP4 ORIT上作用的功能酶。此外,这项研究的发现表明,TRAG和RLX1独立于先前描述的IV型分泌系统,包括由CAG致病性岛和梳子转化设备编码的,在介导H. Pylori菌株之间的结合质粒DNA转移中。
引言。对外部噪声的极端敏感性是构建和操作大规模量子装置的主要障碍之一。量子误差校正(QEC)通过在更大的空间中编码量子信息来解决这一问题,以便可以检测和纠正错误(例如,参见参考文献 [1](第 10 章)和参考文献 [2])。现有的 QEC 方案主要关注局部和不相关的错误(或具有有限范围相关的错误),例如参见 [3,4]。然而,例如由于与玻色子浴的耦合 [5 – 7] ,长程关联会对 QEC 的性能产生负面影响 [8,9] 。最近有研究表明,宇宙射线事件 (CRE) 会在超导量子比特中引起灾难性的关联误差 [10 – 13]。高能射线撞击后,会产生声子并在基底中扩散。这些声子随后在超导材料中形成准粒子,进而引起量子比特衰变 [12] 。尽管这些事件很少见,但它们的影响却是毁灭性的,因为它们会导致芯片中所有量子比特发生快速相关弛豫( T 1 误差),从而基本上擦除编码的量子信息 [12] ,这对于可能需要数小时的长时间计算任务尤其有害 [14] 。此外,CRE 的不利影响不仅限于超导量子比特。半导体自旋量子比特 [15] 和基于马约拉纳费米子的量子比特 [16,17] 也分别受到由 CRE 引起的电荷噪声和准粒子中毒的影响。一种针对系统减少 CRE 影响的方法是改变设备的设计,例如,引入声子和准粒子陷阱 [18 – 20] 并增强设备中的声子弛豫 [17] 。在本信中,我们采用不同的方法,使用分布式纠错方案来检测和纠正