摘要 经典计算以前所未有的方式改变了世界,但其部署方式并不总是以公平、正义和平等等道德价值观为优先。以西方为中心、以硅谷为中心的 21 世纪计算模式创造了数字“富人”和“穷人”。量子计算机有望比经典计算机更强大,解决一些经典难题,有可能改变化学、药物发现和机器学习等应用领域。然而,如果对量子计算的访问和控制权没有公平分配,那么这可能会加剧现有的不平等,造成更深的分歧。在这里,我们考虑了对负责任的量子计算的一些可能影响,展望了量子计算的推出如何以公平和平等等道德原则为中心,以防止过去“只考虑经典”的错误。本文提出的问题将引起从事量子计算研究的人和那些关注这项重大新技术的社会影响的人的兴趣。
1。Horwitz R.细胞生物物理学。Biophys J.2016; 110(5):993-996.1。 2。 Henon S,Lenormand G,Richert A,Gallet F.使用光学镊子对人红细胞膜的剪切模量的新确定。 Biophys J. 1999; 76(2):1145-1151。 3。 Asano M,Basieva I,Khrennikov A,Ohya M,Tanaka Y,YamatoI。量子信息生物学:从量子力学的信息解释到分子生物学和认知心理学的应用。 找到了物理。 2015; 45:1362-1378。 4。 Zimmerberg J.膜生物物理学。 Curr Biol。 2006; 16(8):R272-276。 5。 Holdgate G,Embrey K,Milbradt A,Davies G.早期药物发现中的生物物理方法。 ADMET DMPK。 2019; 7(4):222-241。 6。 sun X,Zhou Y,Wang Z,Peng M,Wei X,Xie Y等。 生物分子冷凝物破译细胞命运的分子代码:从生物物理基本原理到治疗实践。 int J Mol Sci。 2024; 25(7):4127。 7。 Mohs RC,Greig NH。 药物发现和开发:基本生物学研究的作用。 阿尔茨海默氏症痴呆症(n y)。 2017; 3(4):651-657。2016; 110(5):993-996.1。2。Henon S,Lenormand G,Richert A,Gallet F.使用光学镊子对人红细胞膜的剪切模量的新确定。Biophys J.1999; 76(2):1145-1151。 3。 Asano M,Basieva I,Khrennikov A,Ohya M,Tanaka Y,YamatoI。量子信息生物学:从量子力学的信息解释到分子生物学和认知心理学的应用。 找到了物理。 2015; 45:1362-1378。 4。 Zimmerberg J.膜生物物理学。 Curr Biol。 2006; 16(8):R272-276。 5。 Holdgate G,Embrey K,Milbradt A,Davies G.早期药物发现中的生物物理方法。 ADMET DMPK。 2019; 7(4):222-241。 6。 sun X,Zhou Y,Wang Z,Peng M,Wei X,Xie Y等。 生物分子冷凝物破译细胞命运的分子代码:从生物物理基本原理到治疗实践。 int J Mol Sci。 2024; 25(7):4127。 7。 Mohs RC,Greig NH。 药物发现和开发:基本生物学研究的作用。 阿尔茨海默氏症痴呆症(n y)。 2017; 3(4):651-657。1999; 76(2):1145-1151。3。Asano M,Basieva I,Khrennikov A,Ohya M,Tanaka Y,YamatoI。量子信息生物学:从量子力学的信息解释到分子生物学和认知心理学的应用。找到了物理。2015; 45:1362-1378。 4。 Zimmerberg J.膜生物物理学。 Curr Biol。 2006; 16(8):R272-276。 5。 Holdgate G,Embrey K,Milbradt A,Davies G.早期药物发现中的生物物理方法。 ADMET DMPK。 2019; 7(4):222-241。 6。 sun X,Zhou Y,Wang Z,Peng M,Wei X,Xie Y等。 生物分子冷凝物破译细胞命运的分子代码:从生物物理基本原理到治疗实践。 int J Mol Sci。 2024; 25(7):4127。 7。 Mohs RC,Greig NH。 药物发现和开发:基本生物学研究的作用。 阿尔茨海默氏症痴呆症(n y)。 2017; 3(4):651-657。2015; 45:1362-1378。4。Zimmerberg J.膜生物物理学。Curr Biol。2006; 16(8):R272-276。 5。 Holdgate G,Embrey K,Milbradt A,Davies G.早期药物发现中的生物物理方法。 ADMET DMPK。 2019; 7(4):222-241。 6。 sun X,Zhou Y,Wang Z,Peng M,Wei X,Xie Y等。 生物分子冷凝物破译细胞命运的分子代码:从生物物理基本原理到治疗实践。 int J Mol Sci。 2024; 25(7):4127。 7。 Mohs RC,Greig NH。 药物发现和开发:基本生物学研究的作用。 阿尔茨海默氏症痴呆症(n y)。 2017; 3(4):651-657。2006; 16(8):R272-276。5。Holdgate G,Embrey K,Milbradt A,Davies G.早期药物发现中的生物物理方法。ADMET DMPK。2019; 7(4):222-241。6。sun X,Zhou Y,Wang Z,Peng M,Wei X,Xie Y等。生物分子冷凝物破译细胞命运的分子代码:从生物物理基本原理到治疗实践。int J Mol Sci。2024; 25(7):4127。7。Mohs RC,Greig NH。药物发现和开发:基本生物学研究的作用。阿尔茨海默氏症痴呆症(n y)。2017; 3(4):651-657。2017; 3(4):651-657。
DTH 卫星广播其实起源于 70 年代初期,当时各种商业、政府和非政府组织之间建立了合作伙伴关系。如今著名的 SITE 项目(卫星教学电视实验)通过 NASA 的应用技术卫星 (ATS) - 6 向数千个贫穷的印度村庄传送教育节目。ATS-6 是由费尔柴尔德空间电子公司为 NASA 制造的。该项目是与印度空间研究组织 (ISRO) 和众多基层非政府组织的合作项目。ATS-6 发出的信号由当地制造的 3 米天线接收,为印度民众提供重要的计划生育、健康和其他发展信息。
昆明蒙特利尔协议(COP15)提出了两种补充策略,以填补融资差距:减少或将有害的补贴和激励措施减少5000亿美元,目前估计每年279.3至5420亿美元(每年为27.420亿美元),从整体上提高了资源,包括在所有资源中提高资源,包括$ 200的资源,包括$ 200的资源,包括$ 200的资源。到2025年,每年至少至少200亿美元,到2030年至少每年300亿美元(GBF Target 19 A)。在GBF目标19(b)至(g)中明确提到了提供这种资金增加的潜在方法。它们包括国际财务资源,国内资源动员,通过影响基金和其他工具,混合金融,创新计划,例如用于生态系统服务的付款,绿色债券,生物多样性偏移和信贷等创新计划,以及福利共享机制。
败血症是一种由失调的宿主对感染反应产生的异质性疾病,仍然是严重的死亡风险。败血症研究中的最新发现强调了表型作为应对异质性和增强治疗精度的可行策略。败血症的表型已从基于严重程度和预后的传统层次转变为动态,表型驱动的治疗选择。本评论涵盖了将败血症亚组与个性化治疗相关联的最新进展,重点是基于表型的治疗预测和决策支持系统。尽管持续存在的挑战,例如标准化表型框架并将发现纳入临床实践,但该主题具有巨大的希望。通过研究治疗反应中的表型变化,我们希望发现新的生物标志物和表型驱动的治疗溶液,为更有效的疗法奠定了基础,并最终改善了患者的结局。
鉴于临床医生和研究人员在处理神经精神疾病方面面临的持续困难,越来越明显的是,有必要超越传统的学科界限。这项研究整合了现有材料,研究了历史变化、神经生物学的基本方面以及神经病学和精神病学之间的共同临床表现。这项研究考察了神经精神病学的历史发展,重点关注早期对精神疾病的理解与后来神经病学和精神病学的划分之间的关系。重点是理解共同神经生物学途径和遗传因素的最新进展,这些进展突出了这些领域的融合。该研究通过分析重叠的认知、情感和行为症状,突出了神经精神疾病临床表现的复杂性。本文批评了传统框架中的诊断问题,强调了区分神经和精神病起源的局限性。这对实现正确的诊断和安排适当的治疗有影响。本文探讨了多学科护理方法的发展,强调了神经病学家和精神科医生之间的成功合作。本研究考察了执行计划的困难以及确定结合不同要素的障碍的过程。它还强调了迫切需要改进教学和学习以实现顺利合作。本文通过研究侧重于共享途径的药物疗法来研究治疗意义。它还讨论了管理同时发生的神经和精神疾病所涉及的困难。该研究还探讨了非药物疗法,如心理治疗和康复方法,作为综合治疗方法的一部分。展望未来,报告确定了研究可以改进的领域,并预测了技术改进对该主题的影响。提出了建议,鼓励进一步探索、合作和独创性,以缩小神经病学和精神病学之间的鸿沟,最终增强我们对神经精神疾病的理解和治疗。这种实时综合增加了正在进行的讨论,提供了与不断变化的当代神经精神病学研究和治疗领域相一致的宝贵见解。
摘要:俄罗斯Gird-09火箭在1933年首次证明的混合火箭推进,结合了液体氧化剂和固体燃料以产生推力。尽管有许多优势,例如增强的安全性,可控性和潜在的环境益处,但混合动力尚未在太空应用中发挥全部潜力。近年来,关于混合推进的研究在学术界和工业中都取得了巨大的动力。最近的成就,例如学生火箭的海拔记录(64公里),第一台电动泵送的混合动力火箭的发射以及成功的25 S悬停测试突出了混合火箭的潜力。但是,尽管混合社区正在不断增长,但尚不存在工业利用和空间验证。在这项工作中,我们通过从文献中提出潜在的应用领域来重新评估混合火箭发动机的可能性。最重要的是,我们确定了阻碍太空部门混合推进的突破的技术挑战,并评估弥合混合火箭开发中差距所必需的技术和方法。
尽管最近有关于 Hunters Point 造船厂 (HPS) 清理工作拙劣的报道,但公众从未完全了解海军放射性活动的范围之广和导致污染的不良环境控制。许多人被误导,认为这些活动主要与几艘暂时停泊在 Hunters Point 的带有放射性的船只以及其他一些未指明但有限的活动有关。然而,HPS 数十年来使用大量各种放射性核素的作业规模远远超出了人们的普遍理解。这些反过来又造成了比海军迄今为止承认的更广泛的污染可能性——数十种放射性核素影响了 HPS 的所有部分。HPS 的核活动可以追溯到原子时代的黎明。1945 年 7 月 16 日“三位一体”爆炸发生后数小时内,美国海军印第安纳波利斯号从亨特斯角驶往太平洋的天宁岛,带走了世界上一半的高浓缩铀和“小男孩”原子弹的零部件。8 月 6 日,原子弹被装载到埃诺拉·盖伊号上,投向广岛。不到一年后,太平洋进行了战后第一次核试验。第二次试验在比基尼环礁泻湖进行,结果严重失控。大量放射性物质污染了数百艘船只,导致海军大部分舰队瘫痪。仅这次试验就有 79 艘放射性船只被带到 Hunters Point 进行“净化”,包括用喷砂和蒸汽清除船上的放射性物质,这反过来又有可能将污染转移到 Hunters Point 各地。由于放射性物质无法通过物理手段中和,“净化”实际上只是将其从放射性船只转移到 Hunters Point。这些太平洋原子弹试验船上的 60 多万加仑放射性污染燃油在 HPS 的锅炉中燃烧,这可能会使污染广泛传播。位于 HPS 的 HPS 海军放射防御实验室 (NRDL) 参与了 1950 年至 1958 年的每次核武器试验。这些原子弹和氢弹试验产生了大量高放射性核武器碎片,这些碎片被带到了 HPS。除了核弹污染和碎片外,国家自然资源局的放射性物质许可证还允许在 Hunters Point 存放大量放射性物质,用于武器效应研究和其他目的。例如:
神经形态计算广义上指使用非冯·诺依曼体系结构来模拟人脑的学习过程。术语“冯·诺依曼体系结构”表示任何存储程序计算机,由于它们共享一条公共总线,因此获取指令和数据操作可能不会同时发生,从而导致“冯·诺依曼瓶颈”,即在单独的内存和计算块之间进行耗能和耗时的数据传输。这种瓶颈限制了计算系统执行数据密集型任务的能力,随着现代机器学习模型的出现,对数据密集型任务的需求只会越来越大。此外,最近的一份报告显示,在“过度参数化模式”下运行的高度复杂的神经网络不会对训练数据中的虚假趋势进行过度拟合,而是比复杂度较低的神经网络对未知数据表现出更好的泛化能力 [ 1 ],这促使模型参数数量自 2015 年以来逐年呈指数增长,训练数据集的大小自 1988 年以来也呈指数增长 [ 2 , 3 ]。具体来说,过去十年见证了从 ResNet-50(> 10 7 个模型参数)到生成式预训练 Transformer 3(GPT-3)(> 10 11 个模型参数)的模型,以及从 ImageNet(~10 6 张图像)到 JFT-3B(> 10 9 幅图像)的数据集。通过克服电子通信、时钟、热管理和电力输送方面的瓶颈 [2],神经形态系统带来了可扩展硬件的希望,可以跟上深度神经网络的指数增长,从而让我们定义了神经形态计算的第一个主要方向:“加速”。那些关注加速的神经形态系统是为了提高现有机器学习模型的速度和能效而构建的,并且往往会产生相对直接的影响。一个常见的例子是深度神经网络前向传递中用于向量矩阵乘法 (VMM) 的交叉阵列。相比之下,我们将神经形态计算的第二个主要目标定义为“实现”,即在非冯·诺依曼架构中实现人类神经生物学功能。第二个目标的影响将比第一个目标更滞后,但代表了下一代机器学习模型的硬件实现,在脉冲神经网络 (SNN)、赫布学习和霍奇金-赫胥黎神经元模型领域取得了进展。
问题的基本原理和陈述 疫苗接种是普通儿科的“衣食父母”。然而,家庭拒绝接种疫苗的情况很常见,并导致过去十年来全国各地爆发了可预防的疾病,包括百日咳、腮腺炎和麻疹。此外,在某些州,幼儿园入学儿童的总疫苗接种率已下降到 80%。1 医护人员在与患者的日常互动中面临障碍,特别是在儿科人群中,医疗决策权落在父母手中。在社交媒体和通过互联网广泛传播信息的时代,医疗服务提供者和父母之间的互动可能主要是为了揭穿通过不准确来源传播的谣言。我们的目标是使用 CCMC 的儿科住院医师试点教育计划来创建一种工具来减少父母对疫苗接种的犹豫,该工具可用于全国所有儿科 GME 计划。