目的:橡胶广泛用于轮胎、机械零件和需要弹性的用户产品。一些基本特性仍未解决,主要是它们在过度机械性能中发挥作用。需要研究弹性橡胶在高动态压力和高拉伸强度下的性能。这些弹性体旨在增加应力断裂并保持高压拉伸强度。设计/方法/方法:本研究对炭黑聚合物基质对不同橡胶拉伸特性的影响进行了数值研究。使用每百份橡胶 (pphr) 三种不同百分比(80%、90% 和 100%)的炭黑填料部分来测量橡胶的材料特性。结果:本研究发现,随着炭黑填料比例增加 30%,拉伸强度和伸长率会增强。实际意义:本研究在四种超弹性模型中对橡胶进行了实验测试:Ogden 模型、Mooney-Rivlin 模型、Neo Hooke 模型、Arruda-Boyce 模型,使用有限元法 (FEM) 获得模拟材料响应的参数,以供比较。这四种模型已广泛应用于橡胶研究。超弹性模型已用于预测拉伸试验曲线——弹性体橡胶模型的准确描述和预测。对于四种模型,Abaqus 的 FEA 包中使用了弹性体材料拉伸数据。在预测选择合适模型的适应性时计算了相对百分比误差——弹性体橡胶模型的准确描述和预测。对于四种模型,Abaqus 的 FEA 包中使用了弹性体材料拉伸数据。在预测选择合适模型的适应性时计算了相对百分比误差。数值 Ogden 模型结果表明,大应变情况下的相对适应性误差为 1% 至 2.04%。原创性/价值:相比之下,其他模型估计参数的拟合误差从 2.3% 到 49.45%。这四个超弹性模型是拉伸试验模拟,目的是
与刚性印刷电路板 (PCB) 和柔性 PCB 相比,软电路具有更高的稳健性和更好的机械阻抗匹配性,可与更广泛的宿主表面(包括纺织品和人体软组织)匹配。然而,可拉伸电子产品开发中的一个关键挑战是使用可印刷油墨的能力,这种油墨在 > 100% 的大应变下仍能保持高电导率和稳定的走线电阻。一种有前途的方法来创建具有低机电耦合的柔软、可拉伸和可印刷电子产品,就是将微流体通道或液态金属 (LM) 液滴整合到软弹性体中。[8,9] 镓基 LM,例如共晶镓铟 (EGaIn),因其高导电性、低流体粘度和可忽略不计的毒性而特别受欢迎。[10] 然而,制造带有 LM 导体的电路通常需要大量劳动力,并且需要许多手动步骤。由于 LM 的粘度低、表面张力高且与基板的粘附性差,直接打印 LM 也具有挑战性。因此,研究人员试图提出创新技术,以打印基于 LM 的电路。在一项研究中,EGaIn 沉积在印刷的 Ag 纳米墨水上,以实现电导率提高 6 个数量级、应变耐受极限提高 20 倍以上。[11] EGaIn 还用于选择性润湿光刻图案化的铜 (Cu) 走线,以创建高性能集成电路 [12],并且还沉积在电纺弹性纤维垫上,以获得具有高导电性和可拉伸性的薄膜导体。[13] 在另一项最近的研究中,LM 和银薄片悬浮在热塑性弹性体中,并用于具有极高拉伸性 (2500%) 的摩擦电纳米发电机。 [14] 其他努力包括利用 EGaIn 液滴渗透网络,无论是印刷迹线的形式 [15,16,17] 还是由悬浮在弹性体基质中的 LM 液滴组成的橡胶复合材料。[18,19,20] 然而,这些使用 LM 液滴印刷软电子器件的方法需要额外的热、光学或机械烧结步骤,以及其他形式的后处理以诱导电导率,并且印刷适性对于与微电子集成的应用受到限制
由薄,柔软,可拉伸的设备制成的电子皮肤,可以模仿人类的皮肤并重建触觉和感知,为假体传感,机器人技术控制和人机界面提供了巨大的机会。薄片设备的高级材料和力学工程已被证明是启用和增强各种电子皮肤的灵活性和可伸缩性的效果途径;但是,由于现有制造技术的限制,设备的密度仍然很低。在这里,我们报告了一个高通量的一步过程,用于对电子皮肤的传感器密度为25传感器/cm 2的大型触觉传感阵列,其中传感器基于本质上可拉伸的压电铅锆钛酸钛酸(PZT)弹性器。以均匀性和被动驱动方式的PZT弹性体传感器阵列可实现高分辨率触觉感应,简化数据采集过程并降低制造成本。高通量制造工艺提供了一个通用平台,用于将本质上可拉伸的材料集成到大面积的高区域,高设备密度软电子设备,用于下一代电子皮肤。
基于可持续发展策略和实际应用要求,至关重要的是发展高强度,可回收和燃气 - 降压聚氨酯(PU)弹性体。因此,具有充分的硼烷酯键和含有磷的组的动态性弹药弹性(PU-DP 1-7),可重新加工,高性能的聚氨酯弹性体(PU-DP 1-7)。PU-DP 1 - 7的化学结构通过傅立叶变换红外光谱法(FTIR)和X射线光电子光谱(XPS)证实。pu-dp 1 - 7显示在900 nm的波长下的透射率约为60%,磷和硼元素均匀分布在其表面内,证实了统一的交联网络的形成。含磷和硼隆的组的包含PU-DP 1-7具有垂直燃烧(UL-94)V-0等级,表明所需的阻燃性。此外,PU-DP 1-7的拉伸强度为42.7 MPa,在休息时的伸长率为616.9%,由于其网络中的丰富氢键,对各种底物具有很高的粘附强度。此外,动态硼酸酯键endow pu-dp 1 - 7具有Su Perior物理回收和形状内存性能。在130℃进行热压后,改革后的PU-DP 1-7胶片显示出在休息时伸长率的恢复效率的83.6%。这项工作提出了一种综合策略,可以通过引入含磷的片段和动态的硼烯酯键来创建具有出色的机械和形状 - 内存性能,具有出色的机械和形状 - 内存性能的综合策略。
trenčín✉通讯作者:P.Skalková,petra.skalkova@tnuni.sk于2024年6月11日收到的新材料的研究和开发不仅是功能性的,而且在生态上可以接受的是行业许多分支的关键方面。此类材料包括弹性体复合材料,该复合材料加强了替代填充剂,例如纤维素。纤维素是用于弹性体复合材料中传统填充剂的可再生和可生物降解替代品。该生物聚合物的主要缺点是它与疏水基质和低机械强度的兼容性不佳。纤维素表面上的游离羟基可以进行广泛的表面修饰。在这项工作中,我们专注于使用两种不同硅烷的化学修饰,因为它们与纤维素表面上的游离羟基反应的能力。这项工作涉及表面改性纤维素的热稳定性的表征,用作聚合物复合材料中的填充剂。以这种方式修饰的纤维素以45 phR的量使用,以用天然橡胶(NR)基质制备弹性体复合材料。用TG/DSC,IR光谱,XRD和扫描电子显微镜表征了充满表面改性纤维素的NR复合材料。关键字:生物聚合物,表面修饰,聚合物复合材料,硅烷,热稳定性简介
橡胶、氟硅酮、弹性体材料:不可用尺寸:X 临界代码:是图纸可释放:DAA3515P010(性能规格)图纸编号:81205 图纸笼代码:否 TO 可释放:不可用 TO 编号:9 预算代码:不可用下一个更高组装:
TIMbber TM 基于 ARIECA 团队开发的专有液态金属嵌入弹性体 (LMEE) 技术。它为聚合物基热界面材料 (PTIM) 设定了新的性能水平。通过悬浮在软弹性体封装材料中的液态金属液滴的独特组合,液态金属的全部潜力可用于大批量制造 TIM 应用。LMEE 中液态金属液滴的极端变形性导致对硅和镍的热接触阻非常低,伸长率极高,超过原始粘合线厚度 (BLT) 的 200%,并且在固化条件下具有低于 0.2% 的出色空洞性能。通过优化基础聚合物,实现了对硅和镍的出色粘附性。
图3。示意图通过硅胶弹性体压印方法(与自旋涂层方法相比(右下 - 右下 - 右镜相距)相比,使用基于溶液的弹性体压印方法(左下 - 双连接)使用基于溶液的工艺制造了柔性IL-GPE膜。左上:DGEBA环氧树脂的化学结构,甲基四氢赤铁甲基酸酐(MECHPA)固化剂,N-苯并二甲基 - 胺(BDMA)催化剂,G4(或四甲基乙二醇乙二醇乙二醇二甲基乙二醇二甲基乙醚(TEGDME)和LITFSI imi imi imi imi imi imi imi imi, 盐。在参考文献[14]的许可下重印该图。版权2020美国化学学会。
无线皮肤界面电子和微流体设备有可能取代有线、笨重且繁琐的个人和临床健康监测技术,使护理从医院环境延伸到家庭。这些设备用于皮肤时,通常采用硅基热固性弹性体 (TSE) 作为封装电子元件的层或用作模制微通道,用于捕获、储存和分析生物流体(例如汗液)。阻碍此类设备商业化应用的障碍包括这些弹性体难以在传统的大规模生产实践中使用。它们相对较高的成本和无法回收是额外的缺点。相比之下,热塑性弹性体 (TPE) 完全兼容工业规模制造工艺,成本低,可回收利用。与 TSE 一样,TPE 柔软、可拉伸、可弯曲、光学透明,同时还具有其他非常适合应用于无线皮肤界面设备的特性。本文介绍了三种市售 TPE 的特性、加工和应用技术,包括两种热塑性聚氨酯,用作无线皮肤水分传感器的封装层,以及一种热塑性苯乙烯嵌段共聚物,用于微流体汗液分析平台。结果表明,TPE 可以有效地集成到这些类型的设备中,成为 TSE 的有力替代品,是一种可大规模生产的可持续材料选择。
通过自动化启用Johann L. Rapp†§,Meredith A. Borden†§,Vittal Bhat†,Alexis Sarabia†,Alexis Sarabia†和Frank A. Leibfarth† *§添加剂制造,聚氨酯,聚合物网络,半自动批次合成,弹性体