甲状腺素相变材料(PCM)是一类独特的化合物,其可切换的光学和电子特性促进了微电子和麦克风学中新兴应用的爆炸。任何应用程序的关键是PCM可在大量循环中可靠切换在晶体和无定形状态之间的能力。在微电子记忆的情况下,该问题已经进行了广泛的研究,但当前基于PCM的光学设备的耐力较低。要了解限制PCM的故障机制,专门在微电体设备中耐力,我们开发了一个片上电阻的微型供电平台和一个自动多模式表征系统,以分析光学PCM的循环性能。证明了超过50,000个周期的大区块PCM设备可逆切换。
摘要:密集的核-壳纳米线阵列具有作为超吸收介质用于制造高效太阳能电池的巨大潜力。通过对室温光反射 (PR) 光谱的详细线形分析,采用 GaAs 复介电函数的一阶导数高斯和洛伦兹模型,我们报告了具有不同壳厚度的独立 GaAs-AlGaAs 核-壳纳米线的 GaAs 近带边吸收特性。纳米线 PR 光谱的线形分析返回了能量在 1.410 和 1.422 eV 之间的双重共振线,这归因于 GaAs 纳米线芯中的应变分裂重空穴和轻空穴激子吸收跃迁。通过对 PR 特征的 Lorentzian 分析评估的激子共振光振荡器强度表明,与参考平面结构相比,纳米线中的 GaAs 带边光吸收显著增强(高达 30 倍)。此外,将积分 Lorentzian 模量的值归一化为每个纳米线集合内的总 GaAs 核体积填充率(相对于相同高度的平面层估计在 0.5-7.0% 范围内),从而首次实现了 GaAs-AlGaAs 核-壳纳米线的 GaAs 近带边吸收增强因子的实验估计,该因子在 22-190 范围内,具体取决于纳米线内核-壳结构。如此强的吸收增强归因于周围的 AlGaAs 壳(在目前的纳米结构中,其平均厚度估计在 ∼ 14 到 100 纳米之间)对入射光进入 GaAs 核的波导改善。关键词:III-V 化合物、GaAs-AlGaAs 核-壳纳米线、光反射光谱、近带边跃迁、增强光吸收、纳米线太阳能电池■简介
光电倍增探测器有望克服有机短波红外光电探测器的低响应度。然而,最近的光电倍增探测器通常会同时增加响应度和暗电流,从而抵消对探测率的影响。为了抑制光电倍增装置中的暗电流,我们提出了一种新的夹层结构,即一种克服信号和噪声之间权衡的 pn 结组合。与使用典型单极电荷传输材料的设备相比,我们的双层设计具有降低暗电流和出色外部量子效率的优势。我们将这种新的夹层设计融入上转换成像器中,使上转换效率和图像对比度翻倍。这种夹层可推广到不同的有机半导体,这尤其有用,因为这里的设计将适用于尚未发现的未来红外材料。
摘要:现代电力系统中可再生能源的广泛使用增加了系统电压和功率的波动。此外,使用可再生能源 (RES) 的主要难题是风能和光伏 (PV) 系统的间歇性和对风速和太阳辐照度的依赖性。因此,利用强大而有效的 RES 储能系统 (ESS) 对于克服这些挑战和困境至关重要。本文介绍了使用电池存储系统 (BSS) 和超导磁能存储 (SMES) 系统对直流母线微电网集成混合太阳能-风能系统的影响。所提出的方法采用 BSS 和 SMES 的组合来提高微电网在不同事件(例如风力变化、阴影、风力涡轮机 (WT) 连接和突然光伏断电事件)期间的稳定性。提出了不同的控制方法来控制系统的不同组件,以提高整个系统的稳定性和电力交换。光伏系统和风电系统均配备独特的最大功率点跟踪 (MPPT) 控制器。此外,每个 ESS 都使用建议的控制方法来控制,以监督系统内有功功率的交换,并在不同的不稳定性期间保持直流总线电压恒定。此外,为了保持负载电压/频率恒定,使用建议的逆变器控制单元控制主逆变器。使用 Matlab/Simulink 执行的仿真结果表明,混合 BSS + SMES 系统成功实现了主要目标,即直流电压、交换功率和负载电压/频率得到改善和平滑。此外,还对三个案例研究进行了比较,即不使用 ESS、仅使用 BSS 以及再次使用 BSS 和 SMES 系统。研究结果证明了基于混合 BSS + SMES 方法的所提控制方法比仅使用 BSS 的控制方法更有效地在可变事件期间保持现代电力系统的稳定性和可靠性。
摘要:本研究采用简单的一步水热合成方法合成了定义明确的稳定化 CuO 纳米花瓣,并通过先进的纳米表征技术研究了其表面,以增强光学和催化性能。透射电子显微镜 (TEM) 分析表征证实了高结晶度 CuO 纳米花瓣的存在,其平均长度和直径分别为 1611.96 nm 和 650.50 nm。纳米花瓣单分散,表面积大,形貌可控,并表现出具有单斜结构的纳米晶体性质。通过拉曼光谱和 X 射线衍射 (XRD) 图案确认了合成样品的相纯度。在 CuO 纳米花瓣中观察到高达 800 nm 的明显宽吸收和增加的带隙。利用 X 射线光电子能谱 (XPS) 测得 CuO 表面的价带 (VB) 和导带 (CB) 位置分别为 + 0.7 和 − 1.03 eV,这对于高效的催化性能非常有前景。此外,在过氧化氢 (H 2 O 2 ) 存在下获得的 CuO 纳米花瓣对黑暗条件下降解亚甲蓝 (MB) 具有优异的催化活性,90 分钟后的降解率 > 99%,明显高于文献报道的水平。增强的催化活性归因于单分散 CuO 纳米花瓣的形貌可控、H 2 O 2 的协同作用和能带结构。这项工作为环境改善的广泛应用机会提供了一种新方法。
由于振动和旋转跃迁,一氧化碳和甲烷等许多分子在中红外范围内都有强的吸收线。1 自 1994 年发明以来,中红外量子级联激光器 (QCL) 已成为分子气体传感的流行选择。2 分子光谱的精度和分辨率高度依赖于 QCL 的光谱线宽。3 由于接近于零的线宽展宽因子 (LBF),4 QCL 本身的固有线宽只有几百赫兹,接近肖洛-汤斯极限。5 然而,电流源噪声、温度波动和机械振动引起的闪烁噪声(1/f 噪声)会显著加宽自由运行 QCL 的实际线宽至兆赫兹范围。6 为了将 QCL 的光谱线宽缩小到千赫兹或赫兹范围,已经开发出各种各样的频率稳定技术。一种主要方法是将 QCL 频率锁定在分子吸收线的一侧,但代价是波长可调性的损失。7、8 另一种方法是通过庞德-德雷弗-霍尔方法将 QCL 锁定在高精度光学腔体上,这种方法容易受到外部声学和机械振动的影响。9 – 11 一种更常见的方法是将 QCL 相位锁定在近红外光学腔体上。
