摘要 — 本研究探讨了将检索增强生成 (RAG) 集成到已使用混合专家 (MoE) 的 Mistral 8x7B 大型语言模型 (LLM) 中,以解决其在复杂信息检索和推理任务中现有的局限性。通过利用 Google BIG-Bench 数据集,我们进行了广泛的定量和定性分析,以评估增强模型的性能。结果显示准确率、精确率、召回率和 F1 分数均有显著提高,凸显了增强模型在生成语境丰富、准确且细致入微的响应方面的卓越能力。这种集成展示了一种克服传统 LLM 固有局限性的有希望的方法,标志着人工智能研究的关键进展。我们的研究结果有助于持续开发更具适应性、更高效、更智能的人工智能系统,为人工智能在各个领域的应用开辟新的途径。该研究承认与数据集范围和计算需求相关的限制,并为未来的研究提出了进一步完善和扩展模型适用性的方向。
摘要。在为农业设计飞机时,所有计算都是针对国际标准气氛(ISA)条件进行的,这使得可以比较在不同气候区进行的几架飞机的计算结果和飞行测试结果,通过将测试结果重新计算,将测试结果与国际标准气氛的参数与“将所有飞机”放置在同一条件下。从历史上看,在ISA领域开发国际标准的材料是在苏联开发的,并形成了国际标准ISO的基础,这又成为国际文职航空组织(ICAO)的文档ICAO 7488/3的基础,随后成为根据国际标准ISO的标准化的州文件。上述作品是在国际标准化ISO/TC 20/SC 6“标准气氛”的国际技术小组委员会框架内进行的,该曲目成立于1980年,是国际标准化机构ISO/TC 20/SC 6“标准气氛”的一部分。标准化是测量统一性的基础。在俄罗斯联合会中,标准化技术委员会TC 484“标准气氛”成立。开发的国际标准气氛模型使我们能够通过将测试结果重新计算为国际标准气氛的参数,将几个飞机在不同气候区域进行的计算和飞行测试结果进行比较,并将所有飞机放置在相同条件下 - ISA条件 - ISA条件。随着航空和太空技术的发展,受到标准化和标准化的大气参数列表正在扩大。
氮是限制植物生长的最重要必需元素。尽管空气中 78% 是氮,但陆生植物物种尚未进化出直接获取和利用氮来生长的途径。然而,豆科植物,如大豆 (Glycine max)、豌豆 (Pisum sativum) 和豆类 (Phaseolus、Vigna 和 Cajanus 物种) 与某些细菌形成共生关系,这些细菌可以将环境中普遍存在的氮固定为氨,从而使它们能够利用它。这个过程称为生物固氮 (BNF)。在通过能源密集型的哈伯-博施法生产合成氮肥之前,BNF 是补充农业用地生物可利用氮的主要来源 1 。然而,尽管合成氮肥的输送效率和作物利用效率较低,但如今仍被广泛用于补充土壤肥力。这最终会显著增加温室气体 (GHG) 排放、氨挥发和活性氮从陆地流失到水中。氮肥施用量的持续增加将通过过度释放强效温室气体(包括 N 2 O,其效力在 100 年内是 CO 2 的 300 倍)和大量消耗化石燃料 2 ,进一步危及气候稳定。N 2 O 也是 21 世纪臭氧消耗的主要原因。因此,减少氮肥施用是缓解粮食不安全和全球变暖的关键策略。提高大豆的 BNF 含量为减少氮肥使用和提高作物产量提供了无与伦比的机会。大豆是四大主要粮食作物之一,2018 年固定了 25 Tg 氮,占豆科作物产量的 70% 3 。大豆的生物固氮作用也可用于间作策略(即在邻近种植两种或两种以上的作物),以提高土壤肥力并提高产量 4 。此外,大豆是人类饮食中经济且优质的植物蛋白来源。此外,它还含有必需的营养素,例如不饱和脂肪酸、磷脂、B 族维生素和矿物质,这些营养素对改善人类饮食质量具有巨大潜力 5 。植物性蛋白质饮食有望将全球活性氮使用量减少一半 6 。然而,天然的BNF系统受到几个缺点的困扰,包括固氮酶的环境敏感性(O 2 和应激诱导的活性氧 ROS 对固氮酶的损害)、BNF 过程的高能耗、缺乏必需的矿物质
摘要。从20世纪初开始,经常采用快速植物生长和发展的生物制备。对微生物与植物之间相互作用的机制的积累知识需要在目标设计中使用最少的资源和能量,并在植物性粒细胞系统的有针对性设计中使用其适应性的优化,以提高土壤生育能力和植物生产率,增加植物的产量,并增加植物对疾病的抵抗力,并增加对疾病和不良环境和应力因素的抵抗力。在今天的文章中,已经在优化农业生产和维持土壤肥力的土壤微生物过程的科学管理方面收集了足够的经验,并设想将微生物学制剂的创造和使用作为植物科学中强化技术的主要联系。众所周知,在酶生长阶段,使用絮凝剂在细菌制剂生产的技术过程中,微生物的生物量浓度,在酶生长阶段,从培养液体中的微生物浓度浓度的阶段进行了。
COVID-19 疫苗可保护人们免于感染和传播 COVID-19。它们还可以防止因 COVID-19 而患上重病。加拿大卫生部已批准了四种 COVID-19 疫苗:辉瑞-BioNTech、Moderna、阿斯利康和杨森(强生)。这些疫苗不含 COVID-19 病毒,不会让您感染 COVID-19。建议使用 mRNA 疫苗辉瑞-BioNTech 和 Moderna 疫苗是“信使 RNA”或“mRNA”疫苗,需要两剂才能完成主要系列加强剂为 5 岁及以上的任何人提供最佳保护,并有助于降低因 COVID-19 而患上重病的风险。建议使用 mRNA 疫苗,因为它们比杨森和阿斯利康疫苗更安全、更有效。杨森 (强生) 疫苗 杨森疫苗是一种“病毒载体”疫苗,获准用于无法或不愿意接种 mRNA 或 Novavax 疫苗的 18 岁及以上人群。需要知情同意。该疫苗需要一剂才能完成主要系列,建议接种加强剂。这种疫苗可能无法提供足够的保护以抵御包括 Omicron 在内的新变种。接种杨森疫苗后,建议接种 mRNA 疫苗加强剂。加强剂可在接种 COVID-19 疫苗或感染 COVID-19 后至少 6 个月接种。在极少数情况下,接种杨森疫苗的人可能会出现以下情况:
AI在生命科学中的大规模AI带来了有关各种业务功能中产品和流程的数据保护和GXP法规的许多法规和法律挑战。我们通过使用Dataiku来管理和记录模型开发,部署和操作的每个步骤来帮助您为动态调节环境准备AI程序。Dataiku使用的商业用例包括改善与销售,医疗保健提供者和患者的全渠道参与度。dataiku的平台也用于基于时间序列的预测,以帮助供应链和制造用例。Deloitte对生命科学和制药行业监管环境有深刻的了解,并凭借我们在AI风险管理方面的技术卓越和联盟的生态系统,我们帮助您实现治理,合规性和MLOPS,以推动自动化和工业化流程。
摘要:关于添加石墨烯增强体来改善氧化铝 (Al 2 O 3 ) 陶瓷材料微加工性能的研究仍然太少且不完整,无法满足可持续制造的要求。因此,本研究旨在详细了解石墨烯增强体对提高 Al 2 O 3 基纳米复合材料激光微加工性能的影响。为此,使用高频感应加热工艺制备了高密度 Al 2 O 3 纳米复合材料样品,其中石墨烯纳米片 (GNP) 的含量为 0 wt.%、0.5 wt.%、1 wt.%、1.5 wt.% 和 2.5 wt.%。对样品进行激光微加工。之后,研究了 GNP 含量对烧蚀深度/宽度、表面形貌、表面粗糙度和材料去除率的影响。结果表明,纳米复合材料的微加工性能受到 GNP 含量的显著影响。与基础 Al 2 O 3(0 wt.% GNP)相比,所有纳米复合材料的烧蚀深度和材料去除率均有所改善。例如,在更高的扫描速度下,与基础 Al 2 O 3 纳米复合材料相比,GNP 增强样品的烧蚀深度增加了 10 倍。此外,与基础 Al 2 O 3 样品相比,0.5 wt.%、1 wt.%、1.5 wt.% 和 2.5 wt.% GNP/Al 2 O 3 纳米复合材料的 MRR 分别增加了 2134%、2391%、2915% 和 2427%。同样,与基础 Al 2 O 3 相比,所有 GNP/Al 2 O 3 纳米复合材料样品的表面粗糙度和表面形貌都有了显著改善。这是因为 GNP 增强体通过增加光吸收率和热导率并减小 Al 2 O 3 纳米复合材料的晶粒尺寸,降低了烧蚀阈值并提高了材料去除效率。在 GNP/Al 2 O 3 纳米复合材料中,0.5 wt.% 和 1 wt.% GNP 样品在大多数激光微加工条件下表现出优异的性能,缺陷最少。总体而言,结果表明,使用基本光纤激光系统(20 瓦)和非常低功耗,可以高质量、高生产率地加工 GNP 增强 Al 2 O 3 纳米复合材料。这项研究表明,在氧化铝陶瓷基材料中添加石墨烯以提高其可加工性具有巨大的潜力。
• 血栓:部分接种强生 COVID-19 疫苗的人出现了罕见的血栓(涉及脑、腹部和腿部的血管)以及有助于身体止血的血细胞水平降低。在出现这些血栓的人中,男性和女性在接种疫苗后约 1-2 周开始出现症状,年龄范围广泛,从 18 岁及以上不等;女性在 30 至 49 岁之间的报告最多。接种疫苗后一至两周内,请注意呼吸短促、胸痛、腿部肿胀、持续性腹痛、严重头痛或视力模糊、容易瘀伤或注射部位以外的皮下出现微小血点。如果您有任何这些症状,请就医。到目前为止,这些罕见的血栓尚未与辉瑞或 Moderna 疫苗有关。
美国使用的所有疫苗都是安全的,包括强生疫苗。去年 12 月,CDC 批准临床上优先考虑接种 mRNA COVID-19 疫苗(辉瑞或 Moderna),而不是强生的 COVID-19 疫苗(如果有)。该建议基于有关疫苗有效性、疫苗安全性和罕见不良事件的最新证据,以及对美国疫苗供应的考虑。在被告知罕见的安全问题后,我们继续为芝加哥对 mRNA 疫苗产生过敏反应或表示更喜欢强生疫苗的成年人接种强生疫苗。
生物武器已经使用了数千年,但合成技术的最新进展使肽和蛋白质毒素的生产更加容易,并对全球生物安全构成威胁。天然毒素,如芋螺毒素、某些溶血化合物和肠毒素,都是肽类毒剂,可以在生物安全措施薄弱的环境中合成,并初步武器化,用于对较小的目标造成致命或非致命影响。技术进步正在改变生物武器周围的威胁格局,并可能促使威胁从国家支持转向更微观层面,这些威胁源于恐怖组织、内部威胁和孤狼式袭击。在这里,我们向读者概述了肽和蛋白质毒素的威胁,提供了强效肽毒素的例子,并介绍了一项拟议的生物安全计划的能力,该计划利用人工智能将商业核苷酸和肽合成供应商联合起来。