氮是限制植物生长的最重要必需元素。尽管空气中 78% 是氮,但陆生植物物种尚未进化出直接获取和利用氮来生长的途径。然而,豆科植物,如大豆 (Glycine max)、豌豆 (Pisum sativum) 和豆类 (Phaseolus、Vigna 和 Cajanus 物种) 与某些细菌形成共生关系,这些细菌可以将环境中普遍存在的氮固定为氨,从而使它们能够利用它。这个过程称为生物固氮 (BNF)。在通过能源密集型的哈伯-博施法生产合成氮肥之前,BNF 是补充农业用地生物可利用氮的主要来源 1 。然而,尽管合成氮肥的输送效率和作物利用效率较低,但如今仍被广泛用于补充土壤肥力。这最终会显著增加温室气体 (GHG) 排放、氨挥发和活性氮从陆地流失到水中。氮肥施用量的持续增加将通过过度释放强效温室气体(包括 N 2 O,其效力在 100 年内是 CO 2 的 300 倍)和大量消耗化石燃料 2 ,进一步危及气候稳定。N 2 O 也是 21 世纪臭氧消耗的主要原因。因此,减少氮肥施用是缓解粮食不安全和全球变暖的关键策略。提高大豆的 BNF 含量为减少氮肥使用和提高作物产量提供了无与伦比的机会。大豆是四大主要粮食作物之一,2018 年固定了 25 Tg 氮,占豆科作物产量的 70% 3 。大豆的生物固氮作用也可用于间作策略(即在邻近种植两种或两种以上的作物),以提高土壤肥力并提高产量 4 。此外,大豆是人类饮食中经济且优质的植物蛋白来源。此外,它还含有必需的营养素,例如不饱和脂肪酸、磷脂、B 族维生素和矿物质,这些营养素对改善人类饮食质量具有巨大潜力 5 。植物性蛋白质饮食有望将全球活性氮使用量减少一半 6 。然而,天然的BNF系统受到几个缺点的困扰,包括固氮酶的环境敏感性(O 2 和应激诱导的活性氧 ROS 对固氮酶的损害)、BNF 过程的高能耗、缺乏必需的矿物质
主要关键词