源自晚期妊娠感染的摘要母体免疫激活(MIA),如妊娠膜炎中所见,在后代中神经发育缺陷的风险显着增加。通过补充母体益生菌来操纵早期菌群已被证明是改善预后的有效手段。但是,这些机制尚不清楚。在这项研究中,我们证明了MIA通过将怀孕的大坝暴露于脂多糖(LPS)的模型中,诱导了血管欠发达,在prewean Prewean时代,血管的渗透性和星形胶质细胞增长增加。BBB生命早期的发育和功能赤字在以后的生活中会损害空间学习。limosilactobacillus reuteri(L. reuteri)从出生时开始补充了BBB欠发达和功能障碍相关的认知功能。母体L. Reuteri介导的后代微生物通讯和代谢反应的β多样性的改变提供了促进BBB完整性和长期神经发育结果的机制和潜在目标。
健康大脑的有效功能取决于两个半球同源区域之间的动态平衡。这种平衡是通过脊间抑制作用促进的,这是大脑组织的关键方面。本质上,一个半球的兴奋性预测激活了其对应物的抑制网络,从而有助于形成周围的侧面网络(Zatorre等,2012; Carson,2020)。这些网络的形成实现了“截然不见”机制在获得神经元皮质水平的新功能方面起着至关重要的作用。它支持运动控制的发展(Mahan和Georgopoulos,2013; Georgopoulos and Carpenter,2015年),并增强了感官感知敏锐度(Kolasinski等,2017; Grujic et al。,2022)。因此,同源半球区域之间的相互作用调节控制人体段的网络的抑制 - 激发平衡,这对于自适应可塑性和学习过程至关重要(Das和Gilbert,1999; Graziadio等,2010)。在诸如疲劳之类的慢性疾病中,半球间的平衡至关重要(Cogliati dezza等,2015; Ondobaka等,2022),它会影响中风的严重程度(Deco和Corbetta,2011; Pellegrino,2011; Pellegrino et al。,2012; Zappasodi et al。 Al。,2013)。尤其是,已经观察到旨在缓解疲劳的神经调节干预措施恢复了原发性运动区域的生理同源性(Porcaro等,2019)和皮质脊柱(Bertoli等,2023年)。
我们实施了Honerkamp和Salmhofer [Phys。修订版b 64,184516(2001)]进入了量子自旋系统的伪摩霍拉纳功能重新归一化组方法。由于这种方法的重新归一化组参数是物理量,因此与更常规的重新归一化组参数相比,温度t,数值效率显着提高,尤其是在计算限制性 - 温度相图时。我们首先采用此方法来确定简单的立方晶格上J 1 -j 2 Heisenberg模型的有限温度相图,在此,我们的发现支持了围绕高挫折点J 2 = 0的消失的小型非磁相的主张。25 J 1。 也许最重要的是,我们发现温度流方案在检测有限的平移过渡方面是有利的。 最后,我们将温度流方案应用于方格上的偶极XXZ模型,在那里我们找到了具有较大非磁性状态的丰富相图,以至于最低的可访问温度。 在适用于错误控制的(量子)蒙特卡洛方法的比较时,我们发现了出色的定量一致性,与数值确切的结果相比偏差不到5%。25 J 1。也许最重要的是,我们发现温度流方案在检测有限的平移过渡方面是有利的。最后,我们将温度流方案应用于方格上的偶极XXZ模型,在那里我们找到了具有较大非磁性状态的丰富相图,以至于最低的可访问温度。在适用于错误控制的(量子)蒙特卡洛方法的比较时,我们发现了出色的定量一致性,与数值确切的结果相比偏差不到5%。
摘要 - 在无人驾驶汽车(UAV)上安装可重构的智能表面(RIS)有望改善传统的地面网络性能。与在无人机上部署被动性RIS的调用方法不同,这项研究探讨了空中活性RI(AARIS)的效率。特别是,研究了AARIS网络的下行链路传输,在此,基站(BS)利用速率分类的多个访问(RSMA)进行有效的干扰管理,并从AARIS支持AARIS的支持下,以共同扩大和反射BS的发射信号。考虑到有效RI的非琐碎能源消耗和无人机的能源储能有限,我们提出了一种创新的元素选择策略,以优化主动RIS元素的ON/OFF状态,该元素的ON/OFF状态可以自适应地管理系统的功耗。为此,提出了一个资源管理问题,旨在通过共同优化BS处的发射界限,元素激活,相移,相位移位和Active RIS的放大因子,用户的RSMA共同数据速率以及无人自由的RSMA共同数据速率,以及无人用的IAV的发电率来最大程度地提高系统能量效率(EE)。由于无人机和用户移动性的动态性质,深入的增强学习(DRL)算法设计用于资源分配,利用元学习来适应快速时变的系统动力学。根据模拟,整合元学习的系统EE会显着增加36%。此外,用AARIS代替固定的陆地活性RI会导致EE增强26%。
pla窃在计算机科学教育中普遍存在[CJ08; MUR10],主要是由于易于复制数字作业。尽管将其理解为不当行为,但一些学生仍继续进行窃,经常试图通过重命名,重新排序或插入代码来混淆它[kar16; NJK19; sağ+22; sağ+23b; sağ+24b]。在大型强制性课程中,手动检查不切实际[CAM+17],使自动窃检测必不可少[OTT76]。诸如Moss和Jplag之类的软件探测器通常用于解决此问题,假设成功的混淆需要已经教授的技能。然而,窃的发电机,例如mossad [db20],通过在不需要专业知识的情况下自动化混淆来挑战这一假设。Mossad通过插入熵或重新排序语句以逃避检测来打破基于令牌的检测器。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版本的版权持有人于2025年1月1日发布。 https://doi.org/10.1101/2024.12.30.630839 doi:Biorxiv Preprint
摘要 — 磁共振成像 (MRI) 的主要缺点是缺乏标准强度尺度。所有观察到的数值都是相对的,只能结合其上下文进行解释。在将 MRI 数据体输入监督学习分割程序之前,需要将它们的直方图相互配准,换句话说,它们需要所谓的规范化。用于辅助脑 MRI 分割的最流行的直方图规范化技术是 Ny'ul 等人在 2000 年提出的算法,该算法对齐一批 MRI 体积的直方图,而不注意可能扭曲直方图的局部病变。另外,一些最近的研究应用了基于简单线性变换的直方图规范化,并报告了使用它们实现的略高的准确性。本文提出研究在脑 MRI 图像分割之前分别在没有和存在局部病变的情况下执行直方图规范化的最合适的方法和参数设置。
量子场理论在存在强背景字段的情况下包含有趣的问题,其中量子计算机有一天可能会提供有价值的计算资源。在嘈杂的中间量子量子时代,考虑更简单的基准问题以开发可行的方法,确定当前硬件的关键局限性并构建新的仿真工具是有用的。在这里,我们使用实时非线性BREIT-WHEELER PAIR的生产作为原型过程,对3Þ1维度进行强场QED(SFQED)进行量子模拟。在Furry-Volkov模式的扩展中得出并截断了强场Qed Hamiltonian,与Breit-wheeler相关的相互作用被转换为量子电路。量子模拟与经典模拟非常吻合,我们开发并适应了与时间依赖的汉密尔顿的Trotterterization的情况。我们还讨论了SFQED量子模拟的长期目标。
摘要。在过去的几年中,歧视性和生成性的大语言模型(LLM)已成为自然语言处理的主要方法。,尽管取得了重大进步,但在比较跨语性生物医学概念归一化中判别和生成性LLM的性能仍然存在差距。在本文中,我们对几个LLM进行了比较研究,涉及跨语言生物医学概念通过致密检索的具有挑战性的任务。我们利用涵盖10种语言的XL-BEL数据集来评估模型在不进一步适应的情况下在各种语言环境中概括的能力。实验发现表明,E5是一种判别模型,表现出卓越的性能,而生物分类出现为表现最佳的生成LLM。复制实验的代码可在以下网址提供:https://github.com/hrouhizadeh/zsh_cl_bcn。
胆汁盐水解酶(BSH)是一种细菌酶(EC 3.5.1.24),它启动了胆汁酸(BAS)的至关重要的解偶(BAS),这是它们通过肠道微生物转化为二级BAS的过程。最近的进步已经深入研究了BAS,将它们视为能够调节宿主中脂质和糖代谢的内分泌分子。在这篇综述中,我们阐明了这项丰富的研究如何扩大我们对BSH以外的BAS和肠道微生物群之间复杂机制的理解,这是益生菌乳酸杆菌的降胆固醇症的影响。我们强调了各种乳酸杆菌的扩展范围,并且在体外和体内都具有证实的胆固醇活性,与BSH活性相关。此外,还提供了研究肠道菌群和乳杆菌中BSH基因的基因组和元基因组研究的摘要,可作为选择潜在的乳酸菌益生菌的附加工具。