摘要 - 超导离子龙门(SIG)项目旨在设计,构建和测试一个离子龙门的弯曲的超导偶极示威磁体(刚度为6.6 Tm)。主示威者磁铁参数是一个4 t的偶极场,该偶尔线生成的圆环孔,直径为80 mm,曲率半径为1.65 m和30°角扇形。该项目插入了CNAO,CERN,INFN和Medaustron之间的Eurosig合作框架中。在这次合作中,SIG的主要目标是对绕线和组装cos-θ线圈的可行性研究,其曲率半径较小。此外,通过构建直接的热示威磁体共享SIG横截面,CERN的平行程序专门用于研究间接冷却问题。这些程序背后的基本思想是检查社区在超导加速器磁铁设计方面的丰富经验是否会导致龙门磁铁域的突破。本文介绍了SIG磁铁概念设计的主要要素,并报告了米兰的Lasa实验室进行的第一次绕组试验,并带有铜虚拟电缆。此外,还讨论了高度弯曲的cosθ线圈的绕,固化和浸渍的可能解决方案。
摘要。NIST Quantum Cryptogra-Phy竞赛中的最终主义者之一是经典的McEliece Cryptosystem。不幸的是,其公共密钥大小代表了实际限制。解决此问题的一种选择是使用不同校正代码的不同家庭。大多数此类尝试都失败了,因为这些密码系统被证明不安全。在本文中,我们建议使用高较小距离距离自偶偶联代码和从中得出的刺穿代码的McEliece类型加密系统。据我们所知,到目前为止,此类代码尚未在基于代码的密码系统中实现。对于80位安全案例,我们构建了长度1 064的最佳自偶代码,据我们所知,该代码以前没有提出。与原始的McEliece密码系统相比,这使我们可以将密钥尺寸降低约38.5%。
应用超导性的创新研究基础设施(IRIS)是一项由意大利大学和研究部长资助的项目,领导层分配给INFN和LASA实验室作为其协调员。该项目目前处于最后阶段,涉及加速器(ESMA)的能源节能,完全高温超导偶极磁铁的设计和构建。该磁铁是由ASG超导体S.P.A.设计的,在INFN LASA团队的支持下。制造将在ASG超导体S.P.A. Genova中进行。此贡献涵盖了偶极子的最终设计及其构建技术,涵盖了电磁,机械和热方面。磁性明智的,使用金属与绝缘绕组技术缠绕12个赛道线圈。整体线圈堆栈(6+6)的长度将近1米,并具有70毫米宽的免费孔,最大中央磁场为10吨。为了缠绕线圈,已经设计和购买了专用的绕组机。可以承受这样的场,即由高强度合金制成的机械结构正在产生。ESMA将是一种传导冷却的无低温磁铁,并将在20 K下运行,从而大大降低了与低温药物相关的成本。
囚禁原子离子系统已证明,其状态准备和测量 (SPAM) 不准确性 [1] 以及单量子比特和双量子比特门错误率 [2–4] 是所有量子比特中最低的。基于囚禁离子的完全可编程、少量子比特量子计算机已经建成 [5, 6]。然而,到目前为止,这些系统尚未扩展到大量量子比特,原因包括异常加热 [7–10]、声子模式拥挤 [11]、光子散射 [12, 13],以及传统光学元件的扩展挑战 [14, 15]。最近,有研究表明,通过直接电磁偶极-偶极相互作用耦合的分子离子量子比特可用于量子信息处理 [16]。虽然使用该方法的分子量子比特系统的可扩展性预计不会受到异常加热或声子模式拥挤的限制,但目前分子离子量子比特并不像原子离子量子比特那样容易控制。特别是,分子离子的 SPAM 由于其通常缺乏光学循环跃迁而变得困难,这使得激光照射分子成为问题 [17]。一种方法是通过共捕获的原子离子进行量子逻辑光谱 (QLS) [18–20],这种方法最近也被用于纠缠原子和分子离子 [21]。然而,由于 QLS 需要在运动基态附近冷却,因此技术要求很高,而且激光操控分子离子会导致自发辐射到暗态。这里,我们描述了如何利用离子阱中的偶极-声子耦合将极性分子离子的偶极矩与多离子库仑晶体的声子模式纠缠在一起。这种现象可以用两种方式直观地理解:作为非静止离子所经历的时间相关电场驱动分子电偶极跃迁,或作为时间相关偶极矩驱动离子运动。对于多个离子,振荡发生在库仑晶体的集体模式中,甚至可以使相距很远的偶极子通过共享声子模式发生强烈相互作用。此外,偶极-声子相互作用可以是
摘要:在材料的同一区域中创建双模式模式是提高信息存储维度,提高加密安全性水平并促进编码技术开发的高级方法。但是,原地,不同的模式可能会导致在制造和使用过程中严重的相互干扰。新材料和图案技术对于进步非介入双模式模式至关重要。在本文中,通过结合结构色和色极化来证明非递交双模式模式,该结构颜色和色极化是由含有偶氮苯的线性液体晶体共聚物设计的,具有光荧光效果。一方面,结构颜色模式是通过硅模板印刷的,并在紫外线诱导的聚合物表面从玻璃状到橡胶状态的局部局部过渡之后,并带有周期性微观结构。另一方面,基于局部光诱导的介体取向的不同极化模式是通过魏格特效应在光荧光区域内产生的。,次级印迹用于消除撰写极化模式期间结构颜色模式的部分损害,从而获得双模式图案而不会干扰。这项研究为创建具有潜在跨行业应用的先进材料和复杂的光图案技术提供了蓝图。■简介
二维(2D)材料,例如,由自组装的分子单层或通过单层范围材料的单层形成,可以与光子纳米腔有效地融合,并有可能达到强耦合方案。耦合可以使用经典的谐波振荡器模型或空腔量子电动力学哈密顿量,这些模型通常忽略单层内的直接偶极 - 偶极相互作用。在这里,我们对系统的全哈密顿量进行对角,包括这些直接的偶极偶极相互作用。对典型2D系统的光学特性的主要影响只是将单层的明亮集体激发的有效能量重新归一致,并将其与纳米光子模式相结合。另一方面,我们表明,对于极端场合的情况,大型过渡偶极矩和低损失,完全包括直接偶极 - 偶极相互作用,对于正确捕获光学响应至关重要,许多集体状态都参与其中。为了量化此结果,我们提出了一个简单的方程式,该方程式指示直接相互作用强烈修改光学响应的条件。
基于输运模型,结合现实的三维体介质展开,研究了粲偶素定向流。非中心对称核-核碰撞可以产生具有对称破缺纵向分布的旋转夸克胶子等离子体(QGP)。在√sNN=200GeVAu+Au半中心碰撞中,粲偶素在初始硬过程中原始产生,它们主要被初始高温倾斜源解离,然后移出体介质,以保留介质的早期信息。原始产生的粲偶素的动量分布受QGP流体动力学膨胀的影响较小,因为其倾斜形状被稀释。这种有偏解离可以产生J/ψ和ψ(2S)的定向流,它们比轻带电强子和开重味子的值大得多。粲偶素定向流有助于量化原子核-原子核碰撞中 QGP 初始能量密度的快度奇数分布。
在UTA教职员工和雷神导师的建议下,UT-Arlington CSE团队的成员提供了一个巨大的机会,可以体验现实世界中的发展条件和程序。由于各种各样的必要技术,团队面前的任务涉及陡峭的学习曲线,其中许多是团队成员的新手。最初随着团队驾驶无人汽车开发景观,持续测试,开发和部署的发展,尽管进展缓慢,但事实证明是一种成功的做法,并有助于确保生产满足竞争对手要求的车辆。通过协作,跨学科团队的工作经验丰富了每个参与者,并允许每个成员在软件,硬件和一般最佳实践中扩展其工程技能。我们要感谢雷神公司和乌特 - 阿灵顿允许我们参加这个非凡的机会。