• Project Summary & objectives - The project will develop tools to ensure safe and reliable power supply associated with the transition towards an electric vehicle (EV) dominated transportation sector, while leveraging on renewable energy (such as solar PV) and battery storage systems to support EV charging and carbon emission reduction. It achieves social benefits through three layers: (i) System - It will enable system operators to effectively manage the power grid to host large number of EVs without blackout while enjoying capital deferral benefits; (ii) community - It provides tools for car park operators with EV charging facilities to avoid potential loss of electricity; and (iii) individuals - It provides optimal charging strategies for EV owners to save on charging while being assured of sufficient battery charge to drive. 该项目将开发工具,以确保有大量电动车出现的交通电气化过程中安全可靠的电力供应, 同时充分利用可再生能源( 比如太阳能) 和电池储能系统支持电动车充电及减少碳排放。它通过三个层面实现社会效益: (i) 系统- 使系统运营商能够有效管理电网,在不停电的情况下支持大量电动汽车,同时享受资本递延收益; (ii) 社区– 让有电动汽车充电设施停车场的物业避免潜在的停电风险; (iii) 个人- 为电动车车主提供最佳充电策略,以节省充电费用,同时确保有足够的电池电量来驾驶。
1人工智能是指以人工方式实现智能的技术。本文中使用的“人工智能等”一词是广义的,包括机器学习、自然语言处理等人工智能要素技术以及在软件、机器人等方面应用和实现的人工智能技术。机器学习是人工智能的技术要素之一,是一种利用数据对特定现象进行分析和学习,并做出判断和预测的算法和技术。其中之一就是深度学习,这是一种通过分层神经网络来提取特征的技术。利用这一点的自然语言处理技术ChatGPT被称为生成式AI,因为它可以根据用户的指令(提示)从训练数据中生成内容。
[1] Muse™:Muse 2:脑感应头带 - 技术增强冥想,https://choosemuse.com/muse-2/。(访问日期:2021/12/01)。[2] FocusCalm:FocusCalm — 训练你的大脑以减轻压力 — 冥想头带,https://focuscalm. com/。(访问日期:2021/12/01)。[3] NextMind:NextMind - 实时脑机接口 - 立即订购你的开发套件,https://www.next-mind.com/。(访问日期:2021/12/01)。 [4] Parini, S.、Maggi, L.、Turconi, AC 和 Andreoni, G.: 基于四类 SSVEP 范式的稳健且自定步调的 BCI 系统:高传输率直接脑通信的算法和协议,计算智能与神经科学,第 2009 卷,第 1-11 页 (2009)。[5] Gembler, F.、Stawicki, P. 和 Volosyak, I.: 使用新颖的 BCI 向导对基于 SSVEP 的 BCI 进行自主参数调整,神经科学前沿,第 9 卷,第 474 页 (2015)。[6] Gembler, F.、Stawicki, P. 和 Volosyak, I.: 探索基于多目标 SSVEP 的 BCI 应用的可能性和局限性,2016 年第 38 届国际
摘要 — 由于迭代矩阵乘法或梯度计算,机器学习模块通常需要大量的处理能力和内存。因此,它们通常不适用于处理能力和内存有限的可穿戴设备。在本研究中,我们提出了一种用于功能性近红外光谱 (fNIRS) 系统的超低功耗、基于实时机器学习的运动伪影检测模块。我们实现了 97.42% 的高分类准确率、38 354 个查找表和 6024 个触发器的低现场可编程门阵列 (FPGA) 资源利用率以及 0.021 W 的动态功耗。这些结果优于传统的 CPU 支持向量机 (SVM) 方法和其他最先进的 SVM 实现。这项研究表明,可以利用基于 FPGA 的 fNIRS 运动伪影分类器,同时满足低功耗和资源限制,这在嵌入式硬件系统中至关重要,同时保持高分类准确率。
Samyogita Hardikar 5,6、Tirso Gonzalez Alam 10、Boris Bernhardt 7、Hao-Ting Wang 8、Will Strawson 2、Michael Milham 9、Ting Xu 9、Daniel Margulies 10、Giulia L. Poerio 2、Elizabeth Jefferies 11、Jeremy I. Skipper 12、Jeffery Wammes 1、Robert Leech 13 和 Jonathan Smallwood 1
尽管多年来FNIRS技术得到了改进,但FNIRS数据集的处理仍然是一项艰巨的任务。尤其是,由于Optodes和Scalp之间的耦合变化而导致的运动伪影识别并纠正并纠正了很难且耗时。此类伪影表示为时间序列信号中的峰值或偏移。由于峰或移位的幅度通常比血液动力学反应功能(HRF)高得多,因此FNIRS信号被显着污染,并且不会反映皮质激活。当头部和四肢的运动在实验方案中不可避免甚至需要时,这种现象就会更明显,例如语音,17个步行,18和手术任务。11,12最近,由于可穿戴或无线FNIRS设备(19,20)的升高,该问题加剧了这些设备的移动范围,用于跑步或团队工作,这些设备更容易受到运动文物的影响。因此,消除运动伪影的有效方法对于在这些情况下利用FNIR是必不可少的。多年来开发的一些策略包括在数据处理过程中保留任何具有运动伪像的试验。仅当收集大型数据集并且不是当前的主要实践时才使用。另一种策略是通过视觉检查识别具有运动伪影的试验/通道,或在普遍的FNIRS数据处理工具箱Homer2中使用诸如HMRMotionArtifact功能之类的功能,然后从进一步分析中丢弃它们。为例,参考。35最近的研究36不过,最合适的方法是使用高级时间序列数据处理方法处理这些试验/通道。这些包括样条插值,21小波滤波,22个主成分分析(PCA),23 Kalman滤波,24和基于相关的信号改进(CBSI)。25这些方法的性能在很大程度上取决于一组假设,以描述运动伪影和参数相关调整的主观选择(表1)。29证明,选择PCA参数,即PCA删除27为0.80和0.97的数据中的方差百分比产生了显着不同的结果。因此,高度可取的方法,不需要对参数的主观微调或不依赖严格的假设的方法。在这里,我们提出了一种自动学习噪声特征的深度学习方法。在过去十年中,深度神经网络已成为一种强大的工具,可以快速有效地抑制图像数据集中的噪声。深度学习模型已被证明可以增强竞争性降解结果,同时与召开方法相比,保留了更多纹理细节。30 - 33深度学习网络在应用于医学成像问题时也表现出卓越的性能。例如,denoising自动编码器(DAE)模型可以Denoise乳房X线照片[结构相似性指数量度(SSIM)从0.45到0.73]和Dental X射线数据(SSIM从0.62到0.86)。34 A DAE模型的峰值信噪比(PSNR)和SSIM高10%,而SSIM比胸部辐射图中的常规算法高。
功能性近红外光谱 (fNIRS) 是一种新兴的非侵入式脑机接口 (BCI) 技术。快速获取精确的脑信号对于成功的 BCI 至关重要。本文研究了一种实时滤波技术,以消除 fNIRS 信号中的运动伪影 (MA) 和低频漂移。使用文献中的气球模型和实验范例生成两种波长的光强度。生成两种类型的 MA(尖峰状和阶梯状)和低频漂移,并将其添加到模拟的两种波长的光强度中。提出了一种新的双级中值滤波器 (DSMF) 来恢复未受污染的信号。使用五个评估指标来确定双滤波器的最佳窗口大小:第一个中值滤波器为 4 s 和 9 s,第二个中值滤波器为 18 s。使用相同的指标将所提出的方法与基于小波的 MA 校正方法和样条插值方法进行了比较。结果表明,所提方法在衰减 MA 和信号失真方面优于比较方法。最后,将设计的 DSMF 应用于来自八名健康受试者的实验数据,其中通过要求受试者摇头来引入 MA。所提方法的滤波数据显示信号干净,没有 MA 和低频漂移。
技术和生理伪影会干扰脑电图 (EEG) 信号。最常见的伪影之一是受试者眼球运动和眨眼产生的自然活动。眨眼伪影 (EB) 遍布整个头部表面,使 EEG 信号分析变得困难。消除眼电图 (EOG) 伪影的方法已知,例如独立成分分析 (ICA) 和回归。本文旨在实现卷积神经网络 (CNN) 以消除眨眼伪影。为了训练 CNN,提出了一种增强 EEG 信号的方法。将从 CNN 获得的结果与 ICA 和回归方法的结果进行比较,以比较生成的和真实的 EEG 信号。所得结果表明,CNN 在消除眨眼伪影的任务中表现更好,尤其是对于位于头部中央部分的电极。
摘要:人们已经对眼球运动及其作为眼部伪影 (OA) 对脑电图 (EEG) 记录的贡献进行了深入研究。然而,它们的存在通常被认为会妨碍分析。一种被广泛接受的绕行方法是避免伪影。OA 处理通常简化为拒绝受污染的数据。为了克服数据丢失和行为限制,研究小组提出了各种校正方法。最先进的方法是数据驱动的,通常要求 OA 与大脑活动不相关。这对于视觉运动任务并不一定成立。为了防止相关信号,我们研究了一种双块方法。在第一个块中,受试者根据视觉引导范式进行扫视和眨眼。然后,我们为这些数据拟合了 5 种伪影去除算法。为了测试它们在伪影衰减和大脑活动保存方面的平稳性,我们在一小时后记录了第二个块。我们发现,扫视和眨眼仍可减弱到偶然水平,而休息试验期间的大脑活动仍可保留。